

1. Indice

1	. Indice	3
2	. Generalità	6
	2.1 Informazioni	6
	2.2 Simbologia utilizzata	7
	2.3 Destinazione d'uso	7
	2.4 Direttive europee	8
	2.5 Norme armonizzate	8
	2.6 Taglie disponibili	9
	2.7 Targa identificativa	9
	2.8 Codifica	11
	2.9 Curve Coppia / Potenza	13
3	. Dati tecnici	14
	3.1 Caratteristiche Standard	14
	3.2 Trasduttore standard (encoder)	15
	3.3 Carichi radiali ammissibili	16
	3.3.1 Cuscinetti a sfere VR160	16
	3.3.2 Cuscinetti a rulli VR160	16
	3.3.3 Cuscinetti a sfere VR180	17
	3.3.4 Cuscinetti a rulli VR180	17
	3.3.5 Cuscinetti a sfere VR225	17
	3.3.6 Cuscinetti a rulli VR225	18
	3.3.7 Cuscinetti a sfere VR280	18
	3.3.8 Cuscinetti a rulli VR280	18
	3.4 Caratteristiche Opzionali	
	3.5 Forme costruttive	
	3.6 Posizioni di montaggio raccomandate	20
	3.7 Ventilazione	21
	3.7.1 Dati ventilatori assiali monofase standard per le taglie 160, 180 e 225 IP54:	21
	3.7.2 Dati ventilatori assiali trifase (opzionali) per le taglie 160, 180 e 225 IP54:	22
	3.7.3 Dati ventilatori radiali standard per tutti i motori IP23 e per le taglie 180, 225, 280 e 355 IP54	
	3.8 Raffreddamento a liquido	24
	3.8.1 Tipologia del liquido di raffreddamento	
	3.8.2 Sistema di raffreddamento	25
	3.8.3 Derating delle coppie in funzione della temperatura del liquido	26
	3.8.4 Temperatura del liquido di raffreddamento in funzione della temperatura ambiente e dell'umidità relativa	27
	3.9 Freno di stazionamento	
	3.10 Classe di vibrazione e bilanciatura	
	3.11 Derating del motore in funzione della temperatura / altitudine	
	3.12 Fori per ingresso cavi nella scatola morsettiera	
4	. Dati elettrici versione IP54	30

4.1 Caratteristiche motori VR 160 (S-M-L-P) IP54 / IP55 con ventola assiale	30
4.2 Caratteristiche motori VR 180 (S-M-L-P) IP54 / IP55 con ventola assiale	32
4.3 Caratteristiche motori VR 225 (S-M-L-P-X) IP54 / IP55 con ventola assiale	
4.4 Caratteristiche motori VR 280 (S-M-L-P) IP54 / IP55 con ventola radiale	36
5. Dati elettrici versione IP23 S	
5.1 Caratteristiche motori VR 160 (S-M-L-P) IP23 S	38
5.2 Caratteristiche motori VR 180 (S-M-L-P) IP23 S	40
5.3 Caratteristiche motori VR 225 (S-M-L-P-X) IP23 S	42
5.4 Caratteristiche motori VR 280 (S-M-L-P) IP23 S	44
6. Dati elettrici versione raffreddamento a liquido	46
6.1 Caratteristiche motori VR 160 (M-L-P-X) IP54 / IP55 raffreddamento a liquido	46
6.2 Caratteristiche motori VR 180 (M-L-X) IP54 / IP55 raffreddamento a liquido	48
6.3 Caratteristiche motori VR 225 (L-P-X) IP54 / IP55 raffreddamento a liquido	49
6.4 Caratteristiche motori VR 280 (S-M-L-P) IP54 / IP55 raffreddamento a liquido	50
7. Dimensioni di ingombro	52
7.1 Dimensioni di ingombro – VR 160 IP54 / IP55	52
7.2 Dimensioni di ingombro – VR 180 IP54 / IP55	53
7.3 Dimensioni di ingombro – VR 225 IP54 / IP55	54
7.4 Dimensioni di ingombro – VR 280 IP54 / IP55 CON VENTOLA RADIALE e VR 280 IP23	55
7.5 Dimensioni di ingombro – VR 160 IP23	56
7.6 Dimensioni di ingombro – VR 180 IP23	57
7.7 Dimensioni di ingombro – VR 225 IP23	58
7.8 Dimensioni di ingombro – VR 160 IP54 / IP55 Raffreddamento a liquido	59
7.9 Dimensioni di ingombro – VR 180 IP54 / IP55 Raffreddamento a liquido	60
7.10 Dimensioni di ingombro – VR 225 IP54 / IP55 Raffreddamento a liquido	61
7.11 Dimensioni di ingombro – VR 280 IP54 / IP55 Raffreddamento a liquido	62
8. Collegamento elettrico	63
8.1 Istruzioni sulla sicurezza	63
8.2 Trasduttore (Encoder)	65
8.3 Protettore termico	66
9. Trasporto e stoccaggio	66
9.1 Condizioni di trasporto	66
9.2 Condizioni di stoccaggio	66
10. Installazione	67
10.1 Montaggio	67
10.2 Ventilazione	68
10.3 Messa in servizio	69
11. Manutenzione	70
11.1 Istruzioni sulla manutenzione	70
11.2 Risoluzione dei guasti	72
12. Smaltimento	73
13. Certificazioni	73

13.1	Direttiva RoHS	73
13.2	Direttiva EMC	73
13.3	Dichiarazione UE di Conformità	73
13.4	Sistema di gestione per la qualità ISO 9001:2015	73
13.5	Certificato di conformità UL/CSA (opzionale)	73
14 Cont	atti	73

2. Generalità

2.1 Informazioni

Brusatori propone la serie di motori a riluttanza sincrona serie VR, a carcassa quadrata, sviluppati per essere collegati a variatori di frequenza.

I motori VR sono motori sincroni trifase 4 poli con avvolgimento a gabbia di scoiattolo e sono disponibili con grado di protezione **IP23**, **IP54** o **IP55** con sistema di raffreddamento diretto e indiretto.

Sono disponibili 4 taglie meccaniche (160 - 180 - 225 - 280) che possono soddisfare una gamma di potenze da 12.8 kW a 511 kW.

I motori della serie VR sono disponibili anche con raffreddamento a liquido in 4 taglie meccaniche (160 - 180 - 225 - 280) che possono soddisfare una gamma di potenze da 17,3 kW a 426 kW.

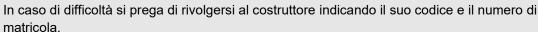
I motori serie VR sono studiati esclusivamente per il collegamento ad inverter e soddisfano il grado di efficienza IE4.

ATTENZIONE!

Tutte le operazioni inerenti al trasporto, all'allacciamento, alla messa in servizio e alla regolare manutenzione devono essere eseguite da personale responsabile qualificato, a conoscenza delle appropriate norme relative alla sicurezza, e che indossi il dovuto equipaggiamento di protezione.

Leggere attentamente tutto il manuale prima di eseguire qualsiasi operazione.

Il presente Manuale è a disposizione dell'utente ed è valido per tutti i motori elettrici Brusatori facenti parte della serie VR.


Un comportamento non conforme può causare gravi danni a persone o cose.

In caso di incertezza, incomprensione o dubbi, interrompere immediatamente le operazioni e rivolgersi al nostro servizio tecnico.

Attenersi alle norme e ai requisiti nazionali, locali e specifici dell'impianto.

ATTENZIONE!

Le esecuzioni speciali e le varianti costruttive possono discostarsi in alcuni particolari tecnici dai motori descritti nel manuale.

Brusatori Srl si riserva il diritto di apportare modifiche al presente documento senza preavviso. Le variazioni costruttive concordate con il cliente hanno la precedenza rispetto al contenuto del manuale.

Il costruttore della macchina in cui verrà incorporato il motore deve inserire, nelle istruzioni destinate all'utente finale, le linee guida sulla sicurezza necessarie.

2.2 Simbologia utilizzata

PERICOLO ATTENZIONE AVVISO

PERICOLO ELETTRICO

PERICOLO CARICHI SOSPESI

PERICOLO SUPERFICIE CALDA

2.3 Destinazione d'uso

I motori elettrici del presente manuale sono conformi alla DIRETTIVA BASSA TENSIONE 2014/35/UE, e destinati all'uso in ambienti industriali standard.

Sono inoltre conformi alla Direttiva 2011/65/UE (Direttiva RoHS) e alla Direttiva EMC 2014/30/UE.

Ogni motore è costruito per essere incorporato in una macchina o per essere assemblato con altri macchinari per costituire una macchina considerata dalla DIRETTIVA MACCHINE 2006/42/CE.

Se utilizzati per altri scopi, è necessario prendere le dovute precauzioni per rendere sicuro il motore nell'ambiente in cui sono destinati.

ATTENZIONE!

Il motore non può essere messo in servizio prima che il macchinario nel quale è incorporato sia dichiarato conforme alla DIRETTIVA MACCHINE 2006/42/CE.

Il fabbricante del macchinario deve inoltre verificare che la macchina sia conforme alla DIRETTIVA EMC 2014/30/UE.

Questo documento è destinato al fabbricante della macchina, non all'utente finale.

Il fabbricante della macchina in cui il motore verrà incorporato ha la responsabilità di fornire il manuale di installazione, uso e manutenzione all'utente finale.

2.4 Direttive europee

DIRETTIVA BASSA TENSIONE (LVD) 2014/35/EU	Conforme
DIRETTIVA SOSTANZE PERICOLOSE 2011/65/EU (RoHS) e successive Direttive Delegate	Conforme
DIRETTIVA MACCHINE 2006/42/CE	Responsabilità del fabbricante della macchina
DIRETTIVA EMC 2014/30/UE	Direttiva compatibilità elettromeccanica Responsabilità del fabbricante della macchina

2.5 Norme armonizzate

CEI EN 60034-1: 2011	Parte 1: Caratteristiche nominali e di funzionamento
CEI EN 60034-2:	Parte 2: Metodi di determinazione delle perdite
CEI EN 60034-5: 2021	Parte 5: Gradi di protezione degli involucri delle macchine rotanti (Codice IP)
CEI EN 60034-6: 1997	Parte 6: Metodi di raffreddamento (Codice IC)
CEI EN 60034-7: 1997 / A1:2001	Parte 7: Classificazione delle forme costruttive e dei tipi di installazione nonché posizione delle morsettiere (Codice IM)
CEI EN 60034-8: 2008 / A1:2015	Parte 8: Marcatura dei terminali e senso di rotazione
CEI EN 60034-9	Parte 9: Limiti di rumore
CEI EN 60034-14	Parte 14: Vibrazioni meccaniche delle macchine rotanti
CEI EN 60034-18 41	Parte 18: Sistemi di isolamento elettrico
CEI EN 60034-25	Parte 25: Alimentazione da inverter
CEI EN 60034-30-1/2	Parte 30: Classi di efficienza energetica
UNI 9321	Estremità degli alberi
ISO 22081	Tolleranze generali
UNI ISO 8015	Disegni tecnici e tolleranze
CEI EN 60204-1: 2018	Sicurezza del macchinario - Equipaggiamento elettrico delle macchine Parte 1: Regole generali

2.6 Taglie disponibili

Taglia m	Taglia meccanica		Lunghezza motore				
	160	S	M	L	Р	-	
\/D	180	S	M	L	Р	-	
VK	225	S	M	L	Р	Х	
	280	S	M	L	Р	-	

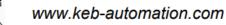
2.7 Targa identificativa

Ogni motore è provvisto della propria targa di identificazione univoca.

La targa viene apposta sul motore sotto forma di etichetta adesiva, e sono indicati i valori nominali e le condizioni operative. Verificare prima della messa in servizio che i dati corrispondano con quelli previsti.

La targhetta deve essere sempre visibile sul motore e NON ne è permessa la rimozione.

S/N AA9176/001 - yyyy/ww 2025/45


Made in Italy Brusatori srl I-20012-Cuggiono www.brusatori.eu

Mat. No.: 012782

Type:

R	$C \sim d$	۱ ما	/D21	61/11	2000	1/00	0001
0		- V		DIVI I	α	1400	

	2000 11.2101000001				
P N: 50,4	[kW]	f [н	z] V N [Vrms	s [N [Arms]	[0 [Arms]
P _N : 50,4 T _N : 268 n _N : 1800	[Nm]	人 61	400	92	33,93
n <i>n</i> : 1800	[rpm]	\triangle			

n_P: 4300 [rpm] Resist. (ph/ph) Y: 0,071 [Ohm] Slip: 30 [rpm] Induct. (ph/ph) Y: 8,8 [mH]

Feedback: /

Brake:

Fan: A2E300 1Ph 230Vac 50/60Hz 1,55A IP44

DE 6312ZZC3 **NDE** 6311ZZC3

3ph AC Servomotor

IEC 60034-1, *Duty* S1

Ins. Class F

IC B35 - IP IP54

Cosfi 0,84 **Eff.** 93,4 [%]

T. sensor: NC 150 °C

Jm 0,29 [kgm2]

Poles 4

Weight 220 [kg]

Nota:

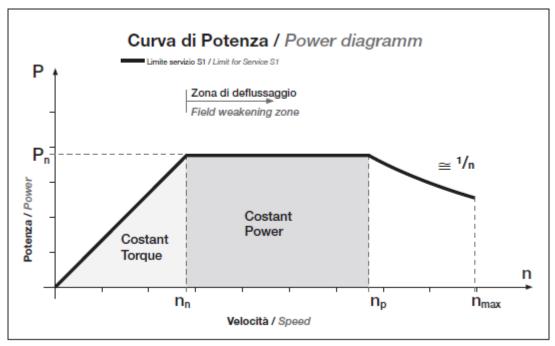
L'aspetto delle targhette mostrate nel presente manuale può differire da quello reale.

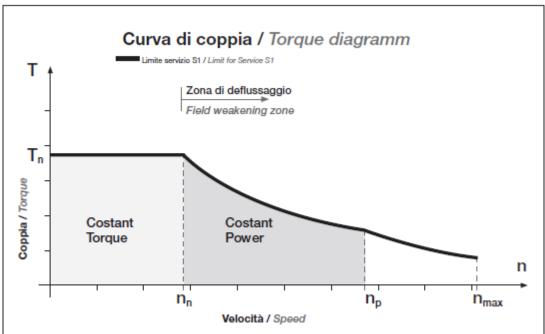
Legenda targhetta

Mat. No	Codice articolo cliente
Type Codice articolo cliente secondario	
BCode Codice motore Brusatori	
S/N	Numero di serie del motore
yyyy/ww	Anno / settimana di produzione
P _N	Potenza nominale in servizio
f	Frequenza nominale
V _N	Tensione nominale
I _N	Corrente alla velocità nominale
l ₀	Corrente a rotore bloccato
T _N	Coppia alla velocità nominale
nn	Velocità nominale
np	Velocità a potenza costante
Slip	Scorrimento
Resist	Resistenza fase-fase
Induct. Induttanza fase-fase	
IEC	Norma di riferimento
Duty	Tipo di servizio
Ins. class	Classe di isolamento avvolgimenti
IC	Indice di raffreddamento
IM	Forma costruttiva
IP	Grado di protezione
Cosfi	Fattore di potenza
Eff. %	Efficienza
T. sensor	Sensore di temperatura
Jm	Momento d'inerzia del rotore
Poles Numero di poli	
Feedback	Tipo trasduttore + dati trasduttore
Brake	Tipo di freno (solo se presente)
Fan	Caratteristiche ventilatore
DE	Cuscinetto lato albero motore (Drive End)
NDE	Cuscinetto lato opposto albero motore (Non Drive End)
Weight	Peso motore

2.8 Codifica

La configurazione di un motore serie VR è descritta con la seguente codifica:


Tine	
Tipo	V II 0000000000000
R1	Motore VR raffreddamento diretto (aperto)
R2 R3	Motore VR raffreddamento indiretto (chiuso) Motore VR raffreddamento a liquido
	·
Taglia	V00 = =000000000000
16	Taglia 160
18	Taglia 180
22	Taglia 225
28	Taglia 280
Lunghezza	v=====================================
A	Lunghezza A
S	Lunghezza S
M L	Lunghezza M Lunghezza L
P	Lunghezza P
×	Lunghezza X
Velocità	V00000■■0000000000
5X	580 rpm
10	1000 rpm
12	1200 rpm
15	1500 rpm
18 22	1800 rpm 2200 rpm
22 26	2600 rpm
Trasduttore + elettronica	V000000 =
00 01	Senza tranduttore, senza predisposizione
01 2W	Senza trasduttore, predisposizione encoder Sick VFS60 Resolver TS2640N1901E64
U1	Encoder Sick VFS60 SinCos
V1	Encoder Sick VFS60 1024 TTL
V2	Encoder Sick VFS60 1024 HTL
V3	Encoder Sick VFS60 2048 TTL
V4	Encoder Sick VFS60 2048 HTL
V5	Encoder Sick VFS60 4096 TTL
V6	Encoder Sick VFS60 4096 HTL


Albero + Chiavetta	V0000000 ■■ 000000			
N1 N2 O1 O2 P1 P2 Q1 Q2 R1 R2 S1 S2 T1 T2 U1 U2 V1	48x110 con chiavetta 48x110 senza chiavetta 55x110 con chiavetta 55x110 senza chiavetta 60x140 con chiavetta 65x140 con chiavetta 65x140 con chiavetta 65x140 senza chiavetta 65x140 con chiavetta 65x140 con chiavetta 65x140 con chiavetta 75x140 senza chiavetta 70x140 con chiavetta 120x210 con chiavetta 70x140 senza chiavetta 120x210 senza chiavetta 70x140 senza chiavetta 70x140 senza chiavetta 120x210 senza chiavetta 70x140 senza chiavetta			
Grado protezione IP	V000000000 = 000000			
0 3 4 5 6	IP 00 IP 23 IP 54 IP 55 IP 65			
Freno	V00000000 ■■ 0000			
00 xx	Nessun freno Tipo di freno Rif. capitolo 3.9 Freno di stazionamento			
Certificazione	V0000000000 = 000			
С	CE Standard			
Codice progressivo	V00000000000 ■■■			
Gli ultimi tre caratteri della codifica sono con	mposti da un codice progressivo, definito internamente, che			

comprende altre varianti del motore, quali:

- ConnessioniDimensioni flangePosizione scatola morsettiera
- Direzione di uscita cavi
- Protezione termica
- Ventilazione
- Tipi di cuscinetti
- Inerzia
- Verniciatura
- Altre personalizzazioni...

2.9 Curve Coppia / Potenza

3. Dati tecnici

3.1 Caratteristiche Standard

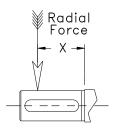
Trifase rinforzato per applicazione a inverter
Classe F secondo CEI EN 60034-1
Classe F secondo CEI EN 60034-1
Classe F secondo CEI EN 60034-1
S1 - Continuo
IP23 secondo CEI EN 60034-5
IP54 secondo CEI EN 60034-5
Da -20 a +40 °C*
Altitudine massima: 1000m sul livello del mare*
Umidità: ≤90% (senza condensazione)
Temperatura di trasporto / stoccaggio: da -20 a +70 °C
Nero RAL 9005
VR160-225 IC 416 Ventilatore monofase montaggio assiale per
IP54
VR280 IC 416 Ventilatore trifase montaggio radiale per IP54
IC 06 Ventilatore trifase montaggio radiale con filtro per IP23
IC 9W7 Raffreddamento a liquido
Avviamento diretto del ventilatore all'inserzione dell'alimentazione
Grado A
Equilibratura con mezza chiavetta
Termoprotettore con contatto normalmente chiuso 150°C
(Tensione max 250 Vac, corrente max 6 Aac)
B35 IM 2001
B33 IIVI 200 I
Cuscinetti a sfere lubrificati a vita
Predisposizione encoder (albero D.14 mm + boccola
isolante 12 - 14 mm)
Consultare paragrafo 3.6
Basetta tre o sei perni in scatola morsettiera
Connettore M23
In alto

^{*}Funzionamenti a temperature o altitudini superiori sono possibili con derating (vedi paragrafo 3.10).

ATTENZIONE!

Il motore può essere utilizzato solo nelle applicazioni per le quali è stato progettato. I valori nominali e le condizioni operative sono indicati sulla targhetta del motore, verificare prima della messa in servizio che i dati corrispondano con quelli previsti.

^{**}Consultare paragrafo 3.6 per le posizioni di montaggio raccomandate


Taglia n	notore	VR160	VR180	VR225	VR280		
	Materiale		Lamierino I	Magnetico			
Statore	Avv. Statorico	Avvolgimento	Avvolgimento in rame con isolamento speciale per utilizzo con inverter				
		Alluminio +					
Scudo Posteriore	Tipologia Materiale	bussola in		Ghisa			
		acciaio					
	D-End (sfere)	6312 ZZ C3	6314 ZZ C3	6318 ZZ C3	6222 C3		
Cuscinetti a sfere	ND-End (sfere)	6311 ZZ C3	6214 ZZ C3	6315 C3	6222 C3		
(standard)	Ingrassaggio	Ingrassati a vita					
	Bloccaggio Assiale	-	D-End side				
	D-End (rulli)	NU 312 EC	NU 314 C3	NU 318	NU 222 EC		
Cuscinetti a rulli	ND-End (rulli)	-	-	-	-		
(opzionale)	Ingrassaggio	A lubr	ificazione periodio	a tramite ingrassa	atore		
	Bloccaggio Assiale		ND-En	d side			
Scatola Morsettiera		Alluminio		Acciaio			
		Alluminio +					
Flangia		bussola in	Ghisa				
		acciaio	aio				
Carter Ventilazione		Acciaio Zincato					
Rotore		Lamierino magnetico					

3.2 Trasduttore standard (encoder)

Taglie su cui è disponibile	160 - 180 - 225 - 280
Tensione di alimentazione	5 - 32 V
Circuito di uscita	HTL / TTL
Risoluzione	65.536 imp./rot.
Corrente massima con carico	Max 30 mA
Massima frequenza di utilizzo	820 kHz
Massima velocità di rotazione	9000 rpm
Protezione	IP65 acc. IEC 60529
Temperatura di lavoro	-30 +100 °C
Umidità relativa massima	90%
Connettore	M23

3.3 Carichi radiali ammissibili

Le tabelle forniscono i carichi radiali ammissibili in Newton, assumendo una forza assiale nulla. La forza radiale viene applicata al centro dell'albero per una durata del cuscinetto di **20000** ore. I motori sono montati in forma costruttiva IM B3 in posizione orizzontale. Attenzione: evitare shock assiali sull' albero durante il montaggio.

3.3.1 Cuscinetti a sfere VR160

Motore	VR160	Massimo	ero:	9800 N				
Quota			Velocità rotore					
X (mm)	580 rpm	1000 rpm	1500 rpm	2200 rpm	3750 rpm	5300 rpm		
0	6700	5600	4700	3800	3100	2400		
20	6600	5400	4600	3700	3050	2350		
30	6500	5300	4500	3600	3000	2300		
40	6300	5200	4400	3500	2950	2275		
50	6200	5100	4300	3400	2900	2225		
60	6100	5000	4200	3350	2850	2200		
70	6000	4900	4100	3300	2800	2175		
80	5800	4800	4050	3200	2700	2150		
90	5700	4700	4000	3100	2600	2125		
100	5500	4600	3900	3000	2500	2000		
110	5400	4400	3800	2950	2400	1950		

3.3.2 Cuscinetti a rulli VR160

Motore	VR160	Massimo	ero:	9800 N					
Quota		Velocità rotore							
X (mm)	580 rpm	1000 rpm	1500 rpm	2200 rpm	3500 rpm	4800 rpm			
0	11000	9200	7600	6000	5000	4000			
20	10800	9000	7500	5800	4900	3950			
30	10600	8800	7400	5700	4800	3900			
40	10400	8600	7300	5600	4700	3850			
50	10200	8400	7200	5500	4600	3800			
60	10000	8200	7000	5400	4500	3750			
70	9800	8000	6900	5300	4400	3700			
80	8800	7800	6600	5200	4300	3600			
90	7600	7600	6400	5100	4200	3500			
100	6700	6700	6200	5000	4100	3400			
110	5800	5800	5800	4900	4000	3300			

3.3.3 Cuscinetti a sfere VR180

Motore	VR180	Massim	ero:	N						
Quota	<u> </u>	Velocità rotore								
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	3050 rpm	4300 rpm				
0	10200	8300	7400	6200	4600	4000				
20	10100	8200	7200	6100	4500	3900				
30	10000	8100	7000	6000	4400	3800				
50	9800	8000	6800	5900	4300	3750				
60	9600	7900	6600	5800	4200	3700				
70	9400	7800	6500	5700	4100	3650				
90	9200	7600	6400	5600	4050	3600				
100	9000	7400	6300	5400	4000	3500				
120	8600	7200	6100	5200	3950	3400				
130	8400	7000	5900	5000	3850	3300				
140	8200	6800	5800	4800	3700	3200				

3.3.4 Cuscinetti a rulli VR180

Motore	VR180	Massimo	ero:	N					
Quota		Velocità rotore							
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	2800 rpm	3800 rpm			
0	15600	12600	10800	9300	6800	5900			
20	15400	12300	10600	9100	6650	5800			
30	15200	12000	10400	8800	6500	5700			
50	14800	11800	10200	8600	6400	5550			
60	14400	11600	10000	8450	6300	5400			
70	14000	11400	9800	8350	6200	5250			
90	13600	11200	9600	8200	6100	5100			
100	12200	10800	9400	8000	6000	5000			
120	11000	10500	9200	7750	5850	4900			
130	9400	9400	8800	7500	5700	4800			
140	8000	8000	8000	7300	5600	4700			

3.3.5 Cuscinetti a sfere VR225

Motore	VR225	Massimo	ero:	N					
Quota		Velocità rotore							
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	2600 rpm	3400 rpm			
0	11000	8800	7600	6600	5000	4200			
20	10800	8600	7400	6500	4900	4150			
40	10600	8400	7300	6400	4800	4100			
60	10400	8300	7200	6250	4700	4075			
70	10200	8200	7100	6100	4600	4050			
90	10000	8100	7000	5900	4500	4000			
110	9750	7950	6800	5700	4400	3950			
120	9500	7800	6600	5500	4300	3875			
140	9250	7600	6400	5400	4200	3800			
160	9000	7400	6200	5300	4100	3750			
170	8600	7200	6050	5200	4000	3700			

3.3.6 Cuscinetti a rulli VR225

Motore	VR225	Massimo	ero:	N		
Quota						
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	2300 rpm	2800 rpm
0	18800	15300	13300	11500	8200	7750
20	18600	15000	13000	11200	8100	7600
40	18300	14800	12750	10800	8050	7400
60	17700	14500	12500	10600	8000	7200
70	17400	14300	12250	10400	7900	7000
90	17000	13800	12000	10200	7800	6900
110	16600	13600	11700	10000	7600	6800
120	15200	13300	11500	9750	7350	6600
140	13200	13000	11200	9500	7200	6400
160	11500	11500	10800	9250	7000	6200
170	9800	9800	9800	9000	6800	6000

3.3.7 Cuscinetti a sfere VR280

Motore	VR280	Massim	ero:	N							
Quota		Velocità rotore									
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	2400 rpm	3000 rpm					
0	12000	9700	8200	6700	5500	4800					
30	11750	9500	8100	6600	5400	4750					
50	11500	9400	8000	6500	5300	4700					
70	11250	9200	7800	6300	5200	4600					
90	11000	9000	7600	6200	5000	4500					
110	10750	8800	7400	6000	4850	4400					
130	10500	8600	7250	5950	4750	4300					
150	10250	8400	7150	5800	4600	4200					
170	10100	8200	7000	5600	4500	4100					
190	9800	8000	6750	5500	4400	4000					
210	9500	7800	6500	5350	4300	3950					

3.3.8 Cuscinetti a rulli VR280

Motore	VR280	Massim	Massimo carico radiale dell'albero:				
Quota		Velocità rotore					
X (mm)	580 rpm	1000 rpm	1500 rpm	1800 rpm	2300 rpm	2800 rpm	
0	23500	18750	16500	13500	10500	9500	
30	23150	18500	16100	13150	10350	9350	
50	22850	18250	15800	12850	10200	9200	
70	22500	18000	15500	12500	10000	9000	
90	22250	17750	15250	12200	9850	8850	
110	22000	17500	15000	11900	9700	8700	
130	21500	17150	14500	11600	9500	8500	
150	19000	16850	14200	11350	9350	8350	
170	16500	16500	13850	11100	9100	8100	
190	14500	14500	13500	10800	8800	7800	
210	12500	12500	12500	10500	8500	7500	

3.4 Caratteristiche Opzionali

Taglia	160	180	225	280
Varianti ed accessori				
Filtro aria (per motori con ventilatore radiale)	S	S	S	S
Sonde termiche PT1000, PT100, PTC, KTY84/130	Х	Х	Х	Х
Altre sonde termiche non menzionate	R	R	R	R
Albero speciale (diametro, senza chiavetta)	Х	Х	Х	Х
Paraolio lato albero comando	Х	Х	Х	Х
Classe di vibrazione B	Х	Х	Х	Х
Cuscinetto a rulli lato albero comando (per tiro cinghia)	Х	Х	Х	Х
Cuscinetto isolato lato opposto albero comando**	Х	Х	Х	Х
Freno di stazionamento	Х	Х	Х	Х
Vernice speciale (colori RAL)	R	R	R	R
Isolamento rinforzato	S	S	S	S
Protezione speciale anticorrosione	Х	Х	Х	Х
Posizione scatola morsettiera a destra	Х	Х	Х	Х
Posizione scatola morsettiera a sinistra	Х	Х	Х	Х
Motori con sistema di isolamento UL (OBJY2/8)	-	-	-	-
Esecuzioni speciali su specifiche del cliente	R	R	R	R
Encoder				
Encoder sinusoidale 1Vpp – 1024 imp./giro	Х	Х	Х	Х
Encoder assoluto monogiro	Х	Х	Х	Х
Encoder assoluto multigiro	Х	Х	Х	X
Resolver 2 poli-7Vrms - rapp. Trasformazione 0.5	X *	X*	X*	X *
S: standard x: possibile	R: su ric	chiesta		

3.5 Forme costruttive

Taglia motore	160	180	225	280
Standard	IM B35	IM B35	IM B35	IM B35

^{*} Non disponibile per motori con freno ** Raccomandato per motori con potenza maggiore di 75 kW

3.6 Posizioni di montaggio raccomandate

		VR160	VR180	VR225	VR280
Posizione di montaggio	Accoppiamento (giunto / puleggia + cinghia)*		S - M - I	P - X	
Doc	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
B35	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE
DO	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
B3	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE
DE	GIUNTO	S - M	NESSUNA	NESSUNA	NESSUNA
B5	PULEGGIA + CINGHIA	S - M	NESSUNA	NESSUNA	NESSUNA
B5 +	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
SUPPORTO	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE
1/00	GIUNTO	TUTTE*	TUTTE*	TUTTE*	TUTTE*
V36	PULEGGIA + CINGHIA	TUTTE*	TUTTE*	TUTTE*	TUTTE*
\/45	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
V15	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE
1/0	GIUNTO	TUTTE*	TUTTE*	TUTTE*	TUTTE*
V6	PULEGGIA + CINGHIA	TUTTE*	TUTTE*	TUTTE*	TUTTE*
\/5	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
V5	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE
V3	GIUNTO	S - M*	S - M*	S - M*	S - M*
V3	PULEGGIA + CINGHIA	S - M*	S - M*	S - M*	S - M*
V1	GIUNTO	TUTTE	TUTTE	TUTTE	TUTTE
VI	PULEGGIA + CINGHIA	TUTTE	TUTTE	TUTTE	TUTTE

^{*}opzione montaggio verticale da indicare in fase di ordine

3.7 Ventilazione

I motori VR160, 180 e 225 con protezione IP54 sono dotati di elettroventilatore assiale montato in asse al motore.

I motori VR280 con protezione IP54 e i motori VR160, 180, 225 e 280 con protezione IP23 sono dotati di elettroventilatore centrifugo montato radialmente al motore.

3.7.1 Dati ventilatori assiali monofase standard per le taglie 160, 180 e 225 IP54:

Taglia motore	VR160	VR180	VR225	Unità
Certificazione	CE / UL	CE / UL	CE / UL	-
Protezione motore	IP54	IP54	IP54	IP
Numero di fasi	1	1	1	N
Tensione di alimentazione	220 ÷ 230	220 ÷ 230	220 ÷ 230	V
Frequenza	50 ÷ 60**	50 ÷ 60**	50 ÷ 60**	Hz
Potenza	350	660	750	W
Corrente assorbita	1,55	2,9	3,3	Α
Distanza minima per entrata / uscita aria posteriore	80	120	120	mm
Distanza minima per entrata / uscita aria laterale	60	80	100	mm
Portata	3420	3420	5160	m³/h
Prevalenza	160	850	700	Ра
Protezione termica da sovraccarico	Termico	Termico	Termico	-
Grado di protezione ventilatore	IP44	IP55	IP55	IP
Condensatore	8	-	-	μF

^{**}per l'alimentazione a 60Hz è necessaria la boccola di riduzione della bocca di aspirazione

3.7.2 Dati ventilatori assiali trifase (opzionali) per le taglie 160, 180 e 225 IP54:

Taglia motore	VR160	VR180	VR225	Unità
Certificazione	CE / UL	CE / UL	CE / UL	-
Protezione motore	IP54	IP54	IP54	IP
Numero di fasi	3	3	3	N
Tensione di alimentazione	400	400	400	V
Frequenza	50 ÷ 60**	50 ÷ 60**	50 ÷ 60**	Hz
Potenza	715	1180	1100	W
Corrente assorbita	1,1	1,8	1,7	Α
Distanza minima per entrata / uscita aria posteriore	80	120	120	mm
Distanza minima per entrata / uscita aria laterale	60	80	100	mm
Portata	1395	2405	3600	m³/h
Prevalenza	950	1042	663	Ра
Protezione termica da sovraccarico	Termico	Termico	Termico	-
Grado di protezione ventilatore	IP55	IP55	IP55	IP
Condensatore	-	-	-	μF

^{**}per l'alimentazione a 60Hz è necessaria la boccola di riduzione della bocca di aspirazione

3.7.3 Dati ventilatori radiali standard per tutti i motori IP23 e per i motori VR280 IP54

Taglia motore	VR180	VR225	VR280	Unità
Certificazione	CE / UL	CE / UL	CE / UL	-
Protezione motore	IP23 / IP54	IP23 / IP54	IP23 / IP54	IP
Numero di fasi	3	3	3	N
Tensione di alimentazione	400 ÷ 460	400 ÷ 460	400 ÷ 460	V
Frequenza	50 ÷ 60**	50 ÷ 60**	50 ÷ 60**	Hz
Potenza	1500	2200	4000	W
Corrente assorbita	3,15	4,5	7,9	Α
Distanza minima per entrata / uscita aria posteriore	140	140	170	mm
Distanza minima per entrata / uscita aria laterale	80	100	120	mm
Portata	2100	2880	4500	m³/h
Prevalenza	1600	1800	2200	Pa
Protezione termica da sovraccarico	Impedenza	Termico	Termico	-
Grado di protezione ventilatore	IP23	IP23	IP23	IP
Condensatore	-	-	-	μF

^{**}per l'alimentazione a 60Hz è necessaria la boccola di riduzione della bocca di aspirazione

3.8 Raffreddamento a liquido

Per i motori della serie VR è disponibile il raffreddamento a liquido, questa tecnologia permette di aumentare le prestazioni riducendo le dimensioni di ingombro totali del motore.

I motori raffreddati a liquido sono provvisti di un circuito di raffreddamento in acciaio, collocato all' interno della carcassa del motore.

Nel circuito viene fatto passare il liquido di raffreddamento del motore.

Rispettare sempre i valori di portata e di pressione del liquido di raffreddamento indicati al paragrafo 7 e sulla targa identificativa del motore.

La temperatura consigliata del liquido di raffreddamento dipende dalla temperatura ambiente e dall'umidità relativa, consultare il capitolo 3.8.4 per identificare quella corretta.

Temperature troppo elevate del liquido di raffreddamento causano un calo delle prestazioni (consultare il paragrafo 3.8.3 riguardante il derating della potenza in funzione della temperatura del liquido).

Temperature troppo basse del liquido di raffreddamento possono causare condensa all'interno del motore, occorre identificare la corretta temperatura del liquido di raffreddamento come si può vedere nel grafico al paragrafo 3.8.4.

3.8.1 Tipologia del liquido di raffreddamento

La tipologia di liquido di raffreddamento è molto importante per la vita del motore, un liquido ricco di impurità può compromettere il funzionamento dell'intero sistema. È consigliata l'applicazione di un filtro in ingresso del circuito per tenere puliti i canali di raffreddamento.

È opportuno utilizzare acqua comune con l'aggiunta di additivi antiruggine, anticorrosione ed anti alga.

Il liquido di raffreddamento deve avere le seguenti caratteristiche:

Condizioni	Unità	Valore
Pressione massima consentita (non continuativa)	Bar	5
Temperatura liquido refrigerante	°C	18 – 22
Valore Ph (a 20°C)	Ph	6 – 9
Durezza acqua	Mmol/l	1.43 – 2.5
Cloridio – Cl	mg/l	< 200
Solfato – SO ₄ ² -	mg/l	< 200
Olio	mg/l	< 10
Dimensione delle particelle ammesse per i corpi estranei*	mm	< 0.1*

^{*}valore da tenere in considerazione per la scelta del filtro da applicare sul circuito.

In caso di installazione del motore in ambienti dove la temperatura può scendere sotto i 5°C è necessario aggiungere un liquido antigelo per evitare il congelamento del liquido di raffreddamento e di conseguenza danni al circuito.

3.8.2 Sistema di raffreddamento

Il sistema di raffreddamento deve essere a circuito chiuso dotato di pompa per ricircolo e controllo di temperatura e pressione, è opportuno utilizzare un chiller industriale.

ATTENZIONE!

Non utilizzare un circuito di raffreddamento aperto.

Questo allo scopo di tutelare l'ambiente ed evitare ostruzioni e/o gravi danni al circuito di raffreddamento e di conseguenza al motore.

ATTENZIONE!

Il liquido di raffreddamento deve essere messo in circolo prima dell'avviamento del motore e deve continuare a circolare per tutto il tempo in cui il motore è in funzione.

Se si verificano problemi legati al funzionamento del sistema di raffreddamento, interrompere immediatamente l'operatività del motore.

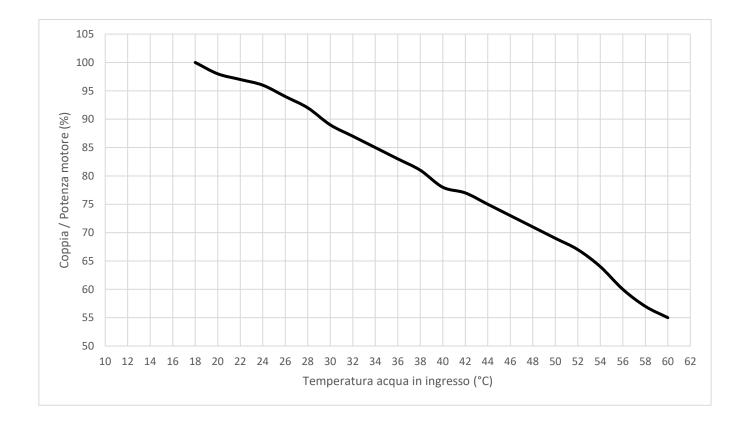
ATTENZIONE!

Dopo lo spegnimento del motore è opportuno lasciare acceso il sistema di raffreddamento per alcuni minuti affinché le temperature del motore si abbassino e per evitare la formazione di vapori ad alta pressione nel circuito.

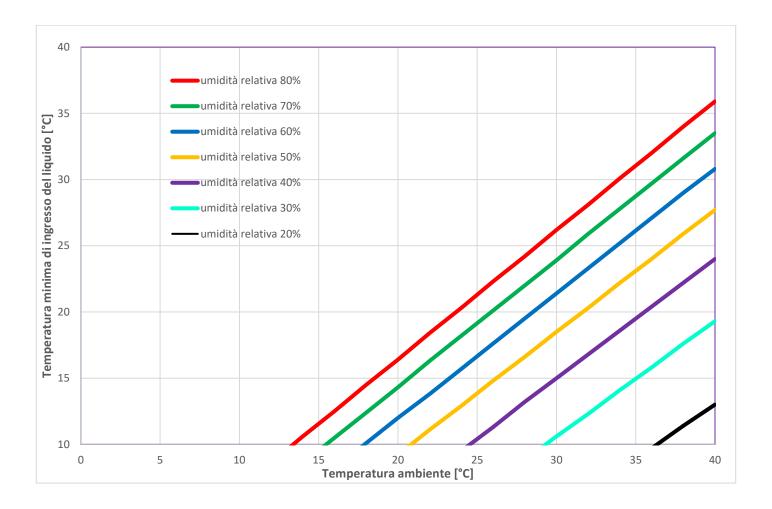
Si consiglia di utilizzare un sistema automatico che arresta il funzionamento del motore in assenza del liquido di raffreddamento per evitare danni al motore.

ATTENZIONE!

Non superare mai la pressione massima del liquido di raffreddamento indicato in targa identificativa o nel paragrafo 5.4.9, prevedere un sistema di monitoraggio di quest'ultima per evitare danni al motore o a persone nella zona circostante al motore.


ATTENZIONE!

Si consiglia di applicare una sonda termica che monitora la temperatura del liquido di raffreddamento ed interviene quando questa dovesse superare la temperatura massima.


3.8.3 Derating delle coppie in funzione della temperatura del liquido

Le prestazioni dei motori calano se aumenta la temperatura di ingresso del liquido di raffreddamento, questo dopo i 20° C, proporzionalmente come riportato nel grafico a seguire:

3.8.4 Temperatura del liquido di raffreddamento in funzione della temperatura ambiente e dell'umidità relativa

Per selezionare la temperatura del liquido di raffreddamento in relazione alla temperatura ambiente e all'umidità, è necessario osservare il seguente grafico:

Per prima cosa occorre identificare il valore della temperatura ambiente (asse X), successivamente occorre spostarsi in verticale verso l'alto e rintracciare la linea inclinata colorata che identifica l'umidità relativa, di conseguenza si troverà sull'asse Y la temperatura minima del liquido di raffreddamento da utilizzare (seguire l'esempio indicato con la linea gialla).

3.9 Freno di stazionamento

Su richiesta è possibile montare un freno di stazionamento sullo scudo posteriore del motore.

Il freno è di tipo elettromeccanico a molle con azione frenante per mancanza d'alimentazione.

Il freno deve essere inserito e disinserito a rotore fermo.

Dati freni:

Taglia motore	VR160	VR180	VR225	VR280	Unità
Codice codifica					-
Produttore freno	KEB	KEB	KEB	KEB	-
Serie freni	Combistop 38 093811N	Combistop 38 103811N	Combistop 38 103811N	Combistop 38 113811N	-
Tipo di freno	Pressione di molla	Pressione di molla	Pressione di molla	Pressione di molla	-
Coppia frenante statica	330	665	1335	1335	Nm
Tensione di alimentazione +/- 5%	24	24	24	24	Vdc
Frequenza	-	-	-	-	Hz
Potenza assorbita	80	130	130	180	W
Velocità massima d' intervento	1500	1500	1500	1500	rpm
Max. lavoro con 1 intervento/ora					kJ
Inerzia del freno	73,8	205,4	1807	1807	Kgcm²
Massa aggiuntiva	26	39	80	80	Kg

¹⁾ A freno non rodato il valore della coppia frenante può discostarsi del +/- 20% dal valore nominale

²⁾ Tensione 24V disponibile su richiesta

3.10 Classe di vibrazione e bilanciatura

I motori VR sono costruiti per soddisfare la classe di vibrazione A e sono bilanciati con mezza chiavetta.

Il livello di vibrazione secondo la classe B è disponibile su richiesta.

Il livello di vibrazione è espresso in spostamento e velocità, rms, utilizzando il metodo della sospensione in aria e senza carico applicato.

	Altezza d' asse (mm)			
	160 < H ≤ 355			
Grado di vibrazione	Spostamento	Velocità		
VIBIGEIOIIO	μm	mm/s		
Α	45	2,8		
В	18	1,1		

3.11 Derating del motore in funzione della temperatura / altitudine

I motori sono designati per operare ad una temperatura compresa tra i -5°C e 40°C e ad una altitudine di 1000 m sopra il livello del mare.

Se l'utilizzo avviene ad altitudine oppure a temperatura più alte il motore deve avere un derating secondo le indicazioni riportate nella tabella sotto:

	Temperatura (°C)				
Altitudine (m)	30	40	50	60	
1000	1	1	0,90	0,80	
2000	1	0,95	0,86	0,75	
3000		0,84	0,76	0,64	
4000		0,73	0,65	0,50	

3.12 Fori per ingresso cavi nella scatola morsettiera

I motori VR sono forniti con i seguenti fori sulla scatola morsettiera (potenza / ausiliari)

Motore	Dimensioni fori
VR 160	1 x Ø51 + 1 x Ø41 + 1 x Ø21
VR 180	6 x Ø65 + 1 x Ø22
VR 225	6 x Ø65 + 1 x Ø22
VR 280	6 x Ø65

4. Dati elettrici versione IP54

4.1 Caratteristiche motori VR 160 (S-M-L-P) IP54 / IP55 con ventola assiale

Grado di protezione	IP 54 / IP55**		Ventilazione		IC 416	
Inerzia rotorica J (kgm²)		S 0,223 - M 0,254 - L 0,298 - P 0,339				
	VR 160 S			VR 160 S	201	
Velocità massima meccanica	VR 160 M	3400	Daga mataya (ligi)	VR 160 M	220	
nmax (rpm)	VR 160 L		Peso motore (kg)	VR 160 L	247	
	VR 160 P			VR 160 P	276	
Cuscinetto lato D-End	6312	ZZ C3	Cuscinetto lato ND-End	6311	ZZ C3	
Classe di vibrazione	,	Α	Forma costruttiva	IM 2001 (B35)		
Classe di isolamento	Н		Classe sovratemperatura	F	-	
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 1	50° C	

^{**}disponibile su richiesta

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	1,55
Numero di fasi	1	Montaggio	Assiale
Tensione (V)	220 / 230	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	350	Grado di protezione (IP)	IP44
Portata massima (m3/min)	57	Pressione massima (Pa)	160
Distanza minima per entrata / uscita	90		

VR 160 S

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	12,8	21	30	36	41,8	46,8	kW
T _N Coppia alla velocità nominale	210	201	191	191	181	172	Nm
I _N Corrente alla potenza nominale	32,2	51,5	72,5	86,8	101	113	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	4000	rpm
T _{max} Coppia massima			40	00			Nm
Efficienza	90,8	93,6	94,9	95,2	94,9	95,1	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 M

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	15,7	25,9	37	44,4	51,6	57,7	kW
T _N Coppia alla velocità nominale	259	247	236	236	224	212	Nm
I _N Corrente alla potenza nominale	39,5	63,2	89,1	107	124	139	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	4000	rpm
T _{max} Coppia massima			50	00			Nm
Efficienza	91,3	94	95,2	95,4	95,2	95,4	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 L

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	19,1	31,5	45	54	62,7	70,2	kW
T _N Coppia alla velocità nominale	315	301	287	287	272	258	Nm
I _N Corrente alla potenza nominale	47,8	76,6	108	130	151	168	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	4000	rpm
T _{max} Coppia massima			60	00			Nm
Efficienza	91,8	94,3	95,4	95,6	95,4	95,6	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 P

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	23,4	38,5	55	66	76,6	86	kW
T _N Coppia alla velocità nominale	385	368	350	350	333	315	Nm
I _N Corrente alla potenza nominale	58,2	93,4	132	158	184	205	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	4000	rpm
T _{max} Coppia massima			7:	30			Nm
Efficienza	92,2	94,6	95,7	95,8	95,7	95,8	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

4.2 Caratteristiche motori VR 180 (S-M-L-P) IP54 / IP55 con ventola assiale

Grado di protezione	IP 54 /	IP55**	Ventilazione	IC 4	116
Inerzia rotorica J (kgm²)			S 0,429 - M 0,604 - L 0,709 - P 0,805		
	VR 180 S			VR 180 S	415
Velocità massima meccanica	VR 180 M	2100	Daga mataya (kg)	VR 180 M	460
nmax (rpm)	VR 180 L	3100	Peso motore (kg)	VR 180 L	515
	VR 180 P			VR 180 P	580
Cuscinetto lato D-End	6314	ZZ C3	Cuscinetto lato ND-End	6214	ZZ C3
Classe di vibrazione	,	4	Forma costruttiva	IM 200	1 (B35)
Classe di isolamento	ŀ	4	Classe sovratemperatura		=
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C

^{**}disponibile su richiesta

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	2,9			
Numero di fasi	1	Montaggio	Assiale			
Tensione (V)	200 / 277	Tipo di ventilazione	Aspirazione forzata			
Potenza (W)	660	Grado di protezione (IP)	IP 55			
Portata massima (m3/min)		Pressione massima (Pa)	682			
Distanza minima per entrata / uscita	Distanza minima per entrata / uscita aria (mm)					

VR 180 S

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	23,4	38,5	55	66	77	kW
T _N Coppia alla velocità nominale	385	368	350	350	333	Nm
I _N Corrente alla potenza nominale	58,8	93,4	132	158	184	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	rpm
T _{max} Coppia massima			730			Nm
Efficienza	92,2	94,6	95,7	95,8	95,7	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 M

VK 100 W						
n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	31,9	52,5	75	90	105	kW
T _N Coppia alla velocità nominale	525	501	478	478	454	Nm
I _N Corrente alla potenza nominale	78,8	127	179	215	250	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	rpm
T _{max} Coppia massima			1000			Nm
Efficienza	92,8	95	96	96,1	96	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 L

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	38,3	63	90	108	125	kW
T _N Coppia alla velocità nominale	630	602	573	573	544	Nm
I _N Corrente alla potenza nominale	94,3	151,7	215	257	299	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	rpm
T _{max} Coppia massima			1200			Nm
Efficienza	93,1	95,2	96,1	96,3	96,1	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 P

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	46,8	77	110	132	153	kW
T _N Coppia alla velocità nominale	770	735	700	700	665	Nm
I _N Corrente alla potenza nominale	115	185	262	314	365	Α
n _p Velocità massima a potenza costante	1200	2000	3000	4000	4000	rpm
T _{max} Coppia massima			1450			Nm
Efficienza	93,5	95,5	96,3	96,4	96,3	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

4.3 Caratteristiche motori VR 225 (S-M-L-P-X) IP54 / IP55 con ventola assiale

Grado di protezione	IP 54 /	IP55**	Ventilazione	IC 4	116
Inerzia rotorica J (kgm²)			S 1,30 - M 1,52 - L 1,74 - P 2,23 - X 2,84	ļ	
	VR 225 S			VR 225 S	730
	VR 225 M			VR 225 M	810
Velocità massima meccanica nmax (rpm)	VR 225 L	2400	Peso motore (kg)	VR 225 L	890
	VR 225 P			VR 225 P	970
	VR 225 X			VR 225 X	1050
Cuscinetto lato D-End	631	8 C3	Cuscinetto lato ND-End	631	5 C3
Classe di vibrazione	,	Α	Forma costruttiva	IM 200	1 (B35)
Classe di isolamento	ŀ	1	Classe sovratemperatura	- F	-
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C

^{**}disponibile su richiesta

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	3,3
Numero di fasi	1	Montaggio	Assiale
Tensione (V)	200 / 277	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	750	Grado di protezione (IP)	IP55
Portata massima (m3/min)		Pressione massima (Pa)	511
Distanza minima per entrata / uscita	aria (mm)		120

VR 225 S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	46,8	77	110	132	kW
T _N Coppia alla velocità nominale	770	735	700	700	Nm
I _N Corrente alla potenza nominale	115	185	262	314	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		14	50		Nm
Efficienza	93,5	95,5	96,3	96,4	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 225 M

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	56,1	92,4	132	158	kW
T _N Coppia alla velocità nominale	924	882	840	840	Nm
I _N Corrente alla potenza nominale	137	222	314	376	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		17	50		Nm
Efficienza	93,8	95,7	96,4	96,6	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 225 L

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	61,7	102	145	174	kW
T _N Coppia alla velocità nominale	1015	969	923	923	Nm
I _N Corrente alla potenza nominale	151	243	345	416	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		19	30		Nm
Efficienza	93,9	95,7	96,5	96,6	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 225 P

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	68,1	112	160	192	kW
T _N Coppia alla velocità nominale	1121	1070	1019	1019	Nm
I _N Corrente alla potenza nominale	166	268	380	456	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		21	30		Nm
Efficienza	94	95,8	96,6	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 225 X

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	76,6	126	180	216	kW
T _N Coppia alla velocità nominale	1261	1203	1146	1146	Nm
I _N Corrente alla potenza nominale	186	301	427	512	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		24	.00		Nm
Efficienza	94,2	95,9	96,6	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

4.4 Caratteristiche motori VR 280 (S-M-L-P) IP54 / IP55 con ventola radiale

Grado di protezione	IP 54 / IP55**		Ventilazione	IC 416	
Inerzia rotorica J (kgm²)			S 3,22 - M 3,80 - L 4,59 - P 5,03		
	VR 280 S			VR 280 S	1230
Velocità massima meccanica nmax (rpm) VR 280 M VR 280 L VR 280 P	Peso motore (kg)	VR 280 M	1420		
		VR 280 L	1680		
			VR 280 P	1830	
Cuscinetto lato D-End	622	2 C3	Cuscinetto lato ND-End	622	2 C3
Classe di vibrazione	,	4	Forma costruttiva	IM 100	01 (B3)
Classe di isolamento	ŀ	1	Classe sovratemperatura	F	
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 150° C	

^{**}disponibile su richiesta

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	7,9
Numero di fasi	3	Montaggio	Radiale
Tensione (V)	400 / 460	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	4000	Grado di protezione (IP)	IP54 / IP55
Portata massima (m3/min)	75	Pressione massima (Pa)	2200
Distanza minima per entrata / uscita	170		

VR 280 S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	96	158	225	270	kW
T _N Coppia alla velocità nominale	1576	1504	1433	1433	Nm
I _N Corrente alla potenza nominale	232	376	534	640	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		30	00		Nm
Efficienza	94,5	96,1	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 280 M

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	119	196	280	336	kW
T _N Coppia alla velocità nominale	1961	1872	1783	1783	Nm
I _N Corrente alla potenza nominale	288	467	664	797	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		37	00		Nm
Efficienza	94,8	96,3	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 280 L

n _N Velocità nominale	580	1000	1500	1800	rpm		
P _N Potenza nominale	134	221	315	378	kW		
T _N Coppia alla velocità nominale	2206	2106	2006	2006	Nm		
I _N Corrente alla potenza nominale	324	525	747	897	Α		
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm		
T _{max} Coppia massima		4200					
Efficienza	94,9	96,4	96,7	96,7	%		
f _N Frequenza nominale	19,3	33,3	50	60	Hz		

VR 280 P

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	151	249	355	426	kW
T _N Coppia alla velocità nominale	2486	2373	2260	2260	Nm
I _N Corrente alla potenza nominale	364	591	842	1011	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		Nm			
Efficienza	95,1	96,5	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

5. Dati elettrici versione IP23 S

5.1 Caratteristiche motori VR 160 (S-M-L-P) IP23 S

Grado di protezione	IP	23	Ventilazione	IC 06	
Inerzia rotorica J (kgm²)					
	VR 160 S			VR 160 S	208
Velocità massima meccanica	VR 160 M	2400	Daga mataya (ligi)	VR 160 M	229
nmax (rpm)	7400 VR 160 L	3400	Peso motore (kg)	VR 160 L	260
	VR 160 P			VR 160 P	285
Cuscinetto lato D-End	6312	ZZ C3	Cuscinetto lato ND-End	6311	ZZ C3
Classe di vibrazione	,	Α	Forma costruttiva	IM 200	1 (B35)
Classe di isolamento	ŀ	1	Classe sovratemperatura	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 150° C	

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	2,31
Numero di fasi	3	Montaggio	Radiale
Tensione (V)	400 / 460	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	1100	Grado di protezione (IP)	IP 54
Portata massima (m3/min)	30	Pressione massima (Pa)	1100
Distanza minima per entrata / uscita	90		

VR 160 S IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm	
P _N Potenza nominale	16	26,3	37,5	45	52,3	58,5	kW	
T _N Coppia alla velocità nominale	263	251	239	239	226	215	Nm	
I _N Corrente alla potenza nominale	40,3	64,4	90,6	109	126	141	Α	
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm	
T _{max} Coppia massima		400						
Efficienza	90,8	93,6	94,9	95,2	94,9	95,1	%	
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz	

VR 160 M IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	19,6	32,4	46,3	55,5	64,5	72,1	kW
T _N Coppia alla velocità nominale	324	309	295	295	280	265	Nm
I _N Corrente alla potenza nominale	49,4	79	111	134	155	174	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima			50	00			Nm
Efficienza	91,3	94	95,2	95,4	95,2	95,4	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 L IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	23,9	37,8	54	64,8	75,2	84,2	kW
T _N Coppia alla velocità nominale	394	361	344	344	326	310	Nm
I _N Corrente alla potenza nominale	59,8	91,9	130	156	181	202	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima		600					
Efficienza	91,8	94,3	95,4	95,6	95,4	95,6	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 P IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	26,9	44,3	63,3	75,9	88,1	98,9	kW
T _N Coppia alla velocità nominale	443	423	403	403	383	362	Nm
I _N Corrente alla potenza nominale	66,9	107	152	182	212	236	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima		730					
Efficienza	92,2	94,6	95,7	95,8	95,7	95,8	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

5.2 Caratteristiche motori VR 180 (S-M-L-P) IP23 S

Grado di protezione	IP 23		Ventilazione	IC	IC 06	
Inerzia rotorica J (kgm²)			S 0,429 - M 0,604 - L 0,709 - P 0,805			
	VR 180 S			VR 180 S	385	
Velocità massima meccanica	VR 180 M	2400	Dana makawa (lun)	VR 180 M	475	
nmax (rpm)	VR 180 L	3100	Peso motore (kg)	VR 180 L	530	
	VR 180 P			VR 180 P	580	
Cuscinetto lato D-End	6314	ZZ C3	Cuscinetto lato ND-End	6214	ZZ C3	
Classe di vibrazione	,	4	Forma costruttiva	IM 200	1 (B35)	
Classe di isolamento	ŀ	1	Classe sovratemperatura	F		
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C	

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	3,15
Numero di fasi	3	Montaggio	Radiale
Tensione (V)	400 / 460	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	1500	Grado di protezione (IP)	IP 54
Portata massima (m3/min)	35	Pressione massima (Pa)	1600
Distanza minima per entrata / uscita	140		

VR 180 S IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	rpm	
P _N Potenza nominale	28,1	46,2	66	79,2	92,4	kW	
T _N Coppia alla velocità nominale	462	442	420	420	400	Nm	
I _N Corrente alla potenza nominale	69,8	112	158	190	221	Α	
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm	
T _{max} Coppia massima		730					
Efficienza	92,2	94,6	95,7	95,8	95,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz	

VR 180 M IP23S

VK 100 W II 255							
n _N Velocità nominale	580	1000	1500	1800	2200	rpm	
P _N Potenza nominale	38,3	63	90	108	126	kW	
T _N Coppia alla velocità nominale	630	601	574	574	545	Nm	
I _N Corrente alla potenza nominale	94,6	152	215	258	300	Α	
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm	
T _{max} Coppia massima		1000					
Efficienza	92,8	95	96	96,1	96	%	
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz	

VR 180 L IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	46	75,6	108	130	150	kW
T _N Coppia alla velocità nominale	756	722	688	688	653	Nm
I _N Corrente alla potenza nominale	113	182	258	308	359	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm
T _{max} Coppia massima		1200				
Efficienza	93,1	95,2	96,1	96,3	96,1	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 P IP23S

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	51,5	84,7	121	145	168	kW
T _N Coppia alla velocità nominale	847	809	770	770	732	Nm
I _N Corrente alla potenza nominale	127	204	288	345	402	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm
T _{max} Coppia massima			1450			Nm
Efficienza	93,5	95,5	96,3	96,4	96,3	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

5.3 Caratteristiche motori VR 225 (S-M-L-P-X) IP23 S

Grado di protezione	IP	23	Ventilazione	IC 06	
Inerzia rotorica J (kgm²)			S 1,30 - M 1,52 - L 1,74 - P 2,23 - X 2,84	l .	
	VR 225 S			VR 225 S	740
	VR 225 M	VR 225 M	820		
Velocità massima meccanica nmax (rpm)	VR 225 L	2400	Peso motore (kg)	VR 225 L	900
	VR 225 P			VR 225 P	1030
	VR 225 X			VR 225 X	1185
Cuscinetto lato D-End	631	8 C3	Cuscinetto lato ND-End	631	5 C3
Classe di vibrazione	,	4	Forma costruttiva	IM 2001 (B35)	
Classe di isolamento	ŀ	1	Classe sovratemperatura		=
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 150° C	

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	4,5
Numero di fasi	3	Montaggio	Radiale
Tensione (V)	400 / 460	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	2200	Grado di protezione (IP)	IP 54
Portata massima (m3/min)	48	Pressione massima (Pa)	1800
Distanza minima per entrata / uscita	140		

VR 225 S IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	53,8	88,6	127	152	kW	
T _N Coppia alla velocità nominale	886	845	805	805	Nm	
I _N Corrente alla potenza nominale	132	213	301	361	Α	
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm	
T _{max} Coppia massima		1450				
Efficienza	93,5	95,5	96,3	96,4	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 225 M IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	64,5	106	152	182	kW
T _N Coppia alla velocità nominale	1063	1014	966	966	Nm
I _N Corrente alla potenza nominale	158	255	361	432	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		1750			
Efficienza	93,8	95,7	96,4	96,6	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 225 L IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	71	117	167	200	kW	
T _N Coppia alla velocità nominale	1167	1114	1061	1061	Nm	
I _N Corrente alla potenza nominale	174	279	397	475	Α	
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm	
T _{max} Coppia massima		1930				
Efficienza	93,9	95,7	96,5	96,6	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 225 P IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	78,3	129	184	221	kW	
T _N Coppia alla velocità nominale	1289	1231	1172	1172	Nm	
I _N Corrente alla potenza nominale	191	308	437	524	Α	
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm	
T _{max} Coppia massima		2130				
Efficienza	94	95,8	96,6	96,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 225 X IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	91,9	151	216	259	kW
T _N Coppia alla velocità nominale	1513	1444	1375	1375	Nm
I _N Corrente alla potenza nominale	223	361	512	614	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		2400			
Efficienza	94,2	95,9	96,6	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

5.4 Caratteristiche motori VR 280 (S-M-L-P) IP23 S

Grado di protezione	IP	23	Ventilazione	IC 06	
Inerzia rotorica J (kgm²)		S 3,22 - M 3,80 - L 4,59 - P 5,03			
	VR 280 S		Peso motore (kg)	VR 280 S	1180
Velocità massima meccanica	VR 280 M	2000		VR 280 M	1370
nmax (rpm)	VR 280 L	2000		VR 280 L	1630
	VR 280 P			VR 280 P	1780
Cuscinetto lato D-End	622	2 C3	Cuscinetto lato ND-End	6222 C3	
Classe di vibrazione	,	A	Forma costruttiva		01 (B3)
Classe di isolamento	ŀ	1	Classe sovratemperatura	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	7,9
Numero di fasi	3	Montaggio	Radiale
Tensione (V)	400 / 460	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	4000	Grado di protezione (IP)	IP 54
Portata massima (m3/min)	75	Pressione massima (Pa)	2200
Distanza minima per entrata / uscita	170		

VR 280 S IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	115	190	270	324	kW	
T _N Coppia alla velocità nominale	1891	1805	1720	1720	Nm	
I _N Corrente alla potenza nominale	278	451	641	768	Α	
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm	
T _{max} Coppia massima		3000				
Efficienza	94,5	96,1	96,7	96,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 280 M IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	143	235	336	403	kW
T _N Coppia alla velocità nominale	2353	2246	2140	2140	Nm
I _N Corrente alla potenza nominale	346	560	797	956	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		37	00		Nm
Efficienza	94,8	96,3	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 280 L IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	161	265	378	454	kW
T _N Coppia alla velocità nominale	2647	2527	2407	2407	Nm
I _N Corrente alla potenza nominale	389	630	896	1076	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		42	00		Nm
Efficienza	94,9	96,4	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

VR 280 P IP23S

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	181	299	426	511	kW
T _N Coppia alla velocità nominale	2983	2848	2712	2712	Nm
I _N Corrente alla potenza nominale	437	709	1010	1213	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		47	00		Nm
Efficienza	95,1	96,5	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

6. Dati elettrici versione raffreddamento a liquido

6.1 Caratteristiche motori VR 160 (M-L-P-X) IP54 / IP55 raffreddamento a liquido

Grado di protezione	IP	54	Raffreddamento	IC 9	W7
Inerzia rotorica J (kgm²)			M 0,254 - L 0,298 - P 0,339 - X 0,433		
	VR 160 M			VR 160 M	215
Velocità massima meccanica	VR 160 L	2400		VR 160 L	240
nmax (rpm)	VR 160 P	3400	Peso motore (kg)	VR 160 P	265
	VR 160 X			VR 160 X	325
Cuscinetto lato D-End	6312	ZZ C3	Cuscinetto lato ND-End	6311	ZZ C3
Classe di vibrazione	,	Α	Forma costruttiva	IM 200	1 (B35)
Classe di isolamento	ŀ	1	Classe sovratemperatura	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C

CARATTERISTICHE CIRCUITO DI RAFFREDDAMENTO

Portata liquido (I/min)	12	Tipo di liquido	Acqua + liquido anticorrosivo/antigelo max 20%
Pressione massima circuito (Bar)	3	Circuito di raffreddamento	Chiuso con chiller esterno
Codute di proceione massimo (Parl)	0.0	Tamparatura liavida	Consigliata +18° C / Massima +60° C con derating
Caduta di pressione massima (Bar)	0,8	Temperatura liquido	(vedi paragrafo 3.8.1)

VR 160 M RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	17,3	28,5	40,7	48,8	56,8	63,5	kW
T _N Coppia alla velocità nominale	285	272	260	260	246	233	Nm
I _N Corrente alla potenza nominale	43,5	69,5	98	118	136	153	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima			50	00			Nm
Efficienza	91,3	94	95,2	95,4	95,2	95,4	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 L RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	20,1	33,1	47,3	56,7	65,8	73,7	kW
T _N Coppia alla velocità nominale	331	316	301	301	286	271	Nm
I _N Corrente alla potenza nominale	50,2	80,4	113	137	159	176	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima			60	00			Nm
Efficienza	91,8	94,3	95,4	95,6	95,4	95,6	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 P RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	23,4	38,5	55	66	76,6	86	kW
T _N Coppia alla velocità nominale	385	368	350	350	333	315	Nm
I _N Corrente alla potenza nominale	58,2	93,4	132	158	184	205	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima			73	30			Nm
Efficienza	92,2	94,6	95,7	95,8	95,7	95,8	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

VR 160 X RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	2600	rpm
P _N Potenza nominale	28,1	46,2	66	79,2	91,9	103	kW
T _N Coppia alla velocità nominale	462	442	420	420	400	378	Nm
I _N Corrente alla potenza nominale	69,8	112	158	190	221	246	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3400	3400	3400	rpm
T _{max} Coppia massima			8	30			Nm
Efficienza	92,2	94,6	95,7	95,8	95,7	95,8	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	86,6	Hz

6.2 Caratteristiche motori VR 180 (M-L-X) IP54 / IP55 raffreddamento a liquido

Grado di protezione	IP	54	Raffreddamento	IC 9W7			
Inerzia rotorica J (kgm²)		M 0,604 - L 0,709 - X 0,805					
	VR 180 M			VR 180 M	390		
Velocità massima meccanica nmax (rpm)	VR 180 L	3100	Peso motore (kg)	VR 180 L	440		
	VR 180 X			VR 180 X	470		
Cuscinetto lato D-End	631	4 C3	Cuscinetto lato ND-End	631	2 C3		
Classe di vibrazione	,	4	Forma costruttiva	IM 200	1 (B35)		
Classe di isolamento	ŀ	4	Classe sovratemperatura	F	=		
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C		

CARATTERISTICHE CIRCUITO DI RAFFREDDAMENTO

Portata liquido (I/min)	15	Tipo di liquido	Acqua + liquido anticorrosivo/antigelo max 20%
Pressione massima circuito (Bar)	3	Circuito di raffreddamento	Chiuso con chiller esterno
Caduta di pressione massima (Bar)	0,9	Temperatura liquido	Consigliata +18° C / Massima +60° C con derating (vedi paragrafo 3.8.1)

VR 180 M RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	31,9	52,5	75	90	105	kW
T _N Coppia alla velocità nominale	525	501	478	478	454	Nm
I _N Corrente alla potenza nominale	78,8	127	179	215	250	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm
T _{max} Coppia massima			1000			Nm
Efficienza	92,8	95	96	96,1	96	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 L RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	38,3	63	90	108	125	kW
T _N Coppia alla velocità nominale	630	602	573	573	544	Nm
I _N Corrente alla potenza nominale	94,3	152	215	257	299	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm
T _{max} Coppia massima		1200				
Efficienza	93,1	95,2	96,1	96,3	96,1	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

VR 180 X RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	2200	rpm
P _N Potenza nominale	46,8	77	110	132	153	kW
T _N Coppia alla velocità nominale	770	735	700	700	665	Nm
I _N Corrente alla potenza nominale	115	185	262	314	365	Α
n _p Velocità massima a potenza costante	1200	2000	3000	3100	3100	rpm
T _{max} Coppia massima			1450			Nm
Efficienza	93,5	95,5	96,3	96,4	96,3	%
f _N Frequenza nominale	19,3	33,3	50	60	73,3	Hz

6.3 Caratteristiche motori VR 225 (L-P-X) IP54 / IP55 raffreddamento a liquido

Grado di protezione	IP	54	Raffreddamento	IC 9W7		
Inerzia rotorica J (kgm²)		L 1,74 - P 2,23 - X 2,84				
	VR 225 L			VR 225 L	680	
Velocità massima meccanica nmax (rpm)	VR 225 P	2400	Peso motore (kg)	VR 225 P	860	
	VR 225 X			VR 225 X	960	
Cuscinetto lato D-End	631	8 C3	Cuscinetto lato ND-End	631	5 C3	
Classe di vibrazione	,	4	Forma costruttiva	IM 1001 (B3)		
Classe di isolamento	ŀ	1	Classe sovratemperatura	F	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	50° C	

CARATTERISTICHE CIRCUITO DI RAFFREDDAMENTO

Portata liquido (I/min)	18	Tipo di liquido	Acqua + liquido anticorrosivo/antigelo max 20%
Pressione massima circuito (Bar)	3	Circuito di raffreddamento	Chiuso con chiller esterno
Caduta di pressione massima (Bar)	0,9	Temperatura liquido	Consigliata +18° C / Massima +60° C con derating (vedi paragrafo 3.8.1)

VR 225 L RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	61,7	102	145	174	kW	
T _N Coppia alla velocità nominale	1015	969	923	923	Nm	
I _N Corrente alla potenza nominale	151	243	345	413	Α	
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm	
T _{max} Coppia massima		1930				
Efficienza	93,9	95,7	96,5	96,6	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 225 P RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	68,1	112	160	192	kW	
T _N Coppia alla velocità nominale	1121	1070	1019	1019	Nm	
I _N Corrente alla potenza nominale	166	268	380	456	Α	
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm	
T _{max} Coppia massima		2130				
Efficienza	94	95,8	96,6	96,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 225 X RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	76,6	126	180	216	kW
T _N Coppia alla velocità nominale	1261	1203	1146	1146	Nm
I _N Corrente alla potenza nominale	186	301	427	512	Α
n _p Velocità massima a potenza costante	1200	2000	2400	2400	rpm
T _{max} Coppia massima		Nm			
Efficienza	94,2	95,9	96,6	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

6.4 Caratteristiche motori VR 280 (S-M-L-P) IP54 / IP55 raffreddamento a liquido

Grado di protezione	IP	54	Raffreddamento	IC 9W7	
Inerzia rotorica J (kgm²)			S 3,22 - M 3,80 - L 5,59 - P 5,03		
	VR 280 S			VR 280 S	1020
Velocità massima meccanica	VR 280 M	2000	Daga mataya (kg)	VR 280 M	1130
nmax (rpm)	VR 280 L	2000	Peso motore (kg)	VR 280 L	1290
	VR 280 P			VR 280 P	1400
Cuscinetto lato D-End	622	2 C3	Cuscinetto lato ND-End	NU 222 EC	
Classe di vibrazione	,	4	Forma costruttiva	IM 100	01 (B3)
Classe di isolamento	I	1	Classe sovratemperatura	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 150° C	

CARATTERISTICHE CIRCUITO DI RAFFREDDAMENTO

Portata liquido (I/min)	18	Tipo di liquido	Acqua + liquido anticorrosivo/antigelo max 20%
Pressione massima circuito (Bar)	3	Circuito di raffreddamento	Chiuso con chiller esterno
Caduta di pressione massima (Bar)	0,9	Temperatura liquido	Consigliata +18° C / Massima +60° C con derating (vedi paragrafo 3.8.1)

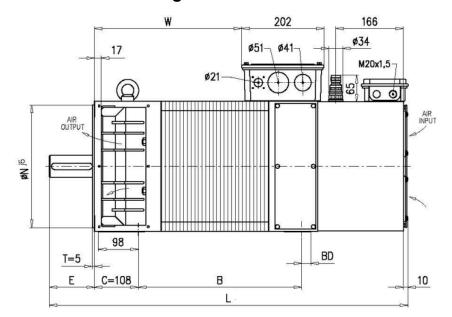
VR 280 S RAFFREDDAMENTO A LIQUIDO

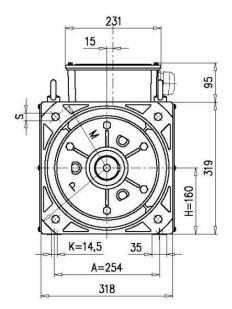
n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	96	158	225	270	kW	
T _N Coppia alla velocità nominale	1576	1504	1433	1433	Nm	
I _N Corrente alla potenza nominale	232	376	534	640	Α	
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm	
T _{max} Coppia massima		3000				
Efficienza					%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

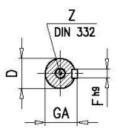
VR 280 M RAFFREDDAMENTO A LIQUIDO

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	119	196	280	336	kW	
T _N Coppia alla velocità nominale	1961	1872	1783	1783	Nm	
I _N Corrente alla potenza nominale	288	467	664	797	Α	
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm	
T _{max} Coppia massima		3700				
Efficienza	94,8	96,3	96,7	96,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	

VR 280 L RAFFREDDAMENTO A LIQUIDO

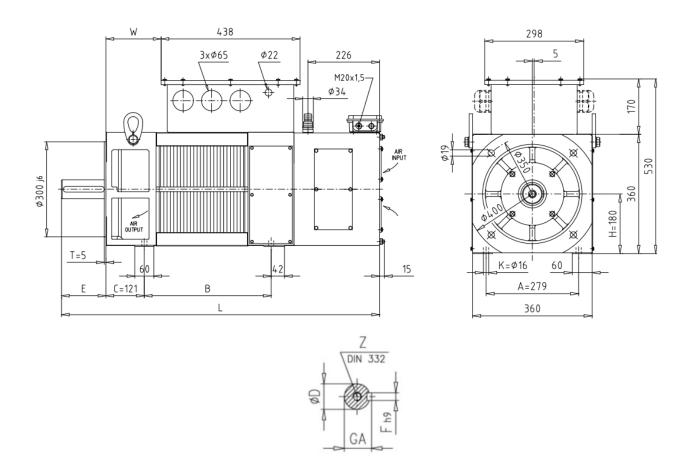

n _N Velocità nominale	580	1000	1500	1800	rpm	
P _N Potenza nominale	134	221	315	378	kW	
T _N Coppia alla velocità nominale	2206	2106	2006	2006	Nm	
I _N Corrente alla potenza nominale	324	525	747	897	Α	
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm	
T _{max} Coppia massima		4200				
Efficienza	94,9	96,4	96,7	96,7	%	
f _N Frequenza nominale	19,3	33,3	50	60	Hz	


VR 280 P RAFFREDDAMENTO A LIQUIDO


n _N Velocità nominale	580	1000	1500	1800	rpm
P _N Potenza nominale	151	249	355	426	kW
T _N Coppia alla velocità nominale	2486	2373	2260	2260	Nm
I _N Corrente alla potenza nominale	364	591	842	1011	Α
n _p Velocità massima a potenza costante	1200	2000	2000	2000	rpm
T _{max} Coppia massima		47	00		Nm
Efficienza	95,1	96,5	96,7	96,7	%
f _N Frequenza nominale	19,3	33,3	50	60	Hz

7. Dimensioni di ingombro

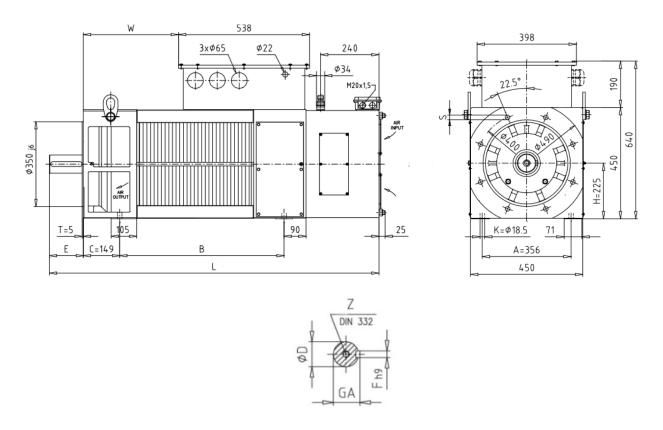
7.1 Dimensioni di ingombro - VR 160 IP54 / IP55


				Lur	nghe	zza			Д	lber	0	
Ti	ıp	O	В	BD	L	Lb*	W	D	Е	GA	F	Z
		S	355	33	845	965	326					
VR 160	201	М	400	23	880	1000	361	55	110	F0	1.0	N420
, X		L	450	23	930	1050	411	m6	110	59	16	M20
		Р	500	18	975	1095	456					

*Lb = lunghezza motore con freno

Tin				F	langia	Э		
Tip	U	P (1)	P (2)	N (1)	N (2)	M (1)	M (2)	S (1)
	S							
VR 160	М	400	250	200	250	250	200	10.5
N R	L	400	350	300	250	350	300	18,5
	Р							

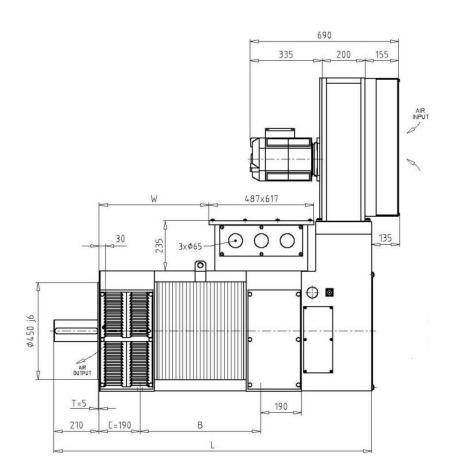
(1) Standard (2) Su richiesta

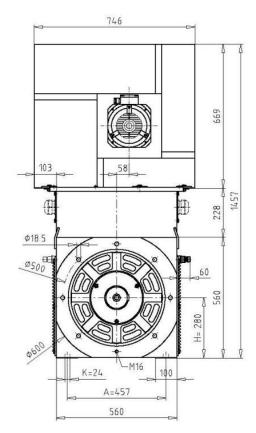

7.2 Dimensioni di ingombro - VR 180 IP54 / IP55

Tin			Lungl	nezza			,	Alberc)	
Tip	00	В	L	Lb*	W	D	Е	GA	F	Z
	S	400	1075	1205	174	60 m6		64		
180	М	520	1195	1325	294		140		40	N420
N N	L	590	1265	1395	364	65 m6	140	69	18	M20
	Р	640	1315	1445	414					

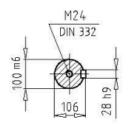
*Lb = lunghezza motore con freno

7.3 Dimensioni di ingombro - VR 225 IP54 / IP55

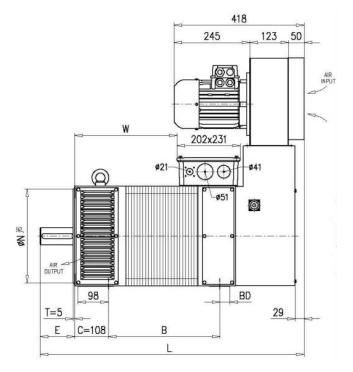

т:				Lung	hezza							Albero)			
Tip	00	В	L (1)	L (2)	Lb* (1)	Lb* (2)	W	D (1)	D (2)	E (1)	E (2)	GA (1)	GA (2)	F (1)	F (2)	Z
	S	555	1335	1365	1485	1515	330									
	М	615	1395	1425	1545	1575	330	75 m6	85 m6	140	170	79,5	90	20	22	
VR 225	L	675	1455	1485	1605	1635	390									M20
	Р	803	1615	/	1765	/	518	85	,	170	,	90	,	22	,	
	x	923	1735	/	1885	/	638	m6	/	170	/	90	/	22	/	

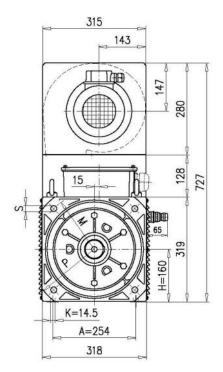

(1) Standard

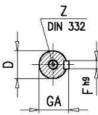
(2) Su richiesta


*Lb = lunghezza motore con freno

7.4 Dimensioni di ingombro – VR 280 IP54 / IP55 CON VENTOLA RADIALE e VR 280 IP23

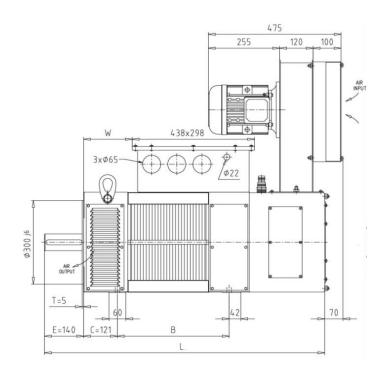


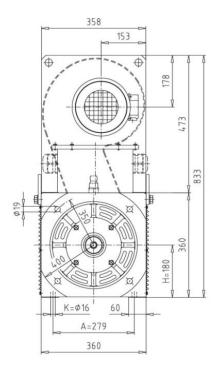


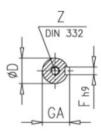

Tin		Lu	ınghez	za
Tip	O	В	L	W
	S	560	1490	510
VR 280	М	640	1570	590
VR.	L 750		1680	700
	Р	810	1740	760

7.5 Dimensioni di ingombro – VR 160 IP23

Tin			Lur	nghe	zza			Д	lber	0	
Tip	O	В	BD	L	Lb*	W	D	E	GA	F	Z
	S	355	33	845	895	326					
160	М	400	23	880	930	361	55	110	Ε0	16	N420
VR 160	L	450	23	930	980	411	m6	110	59	16	M20
	Р	500	18	975	1025	456					

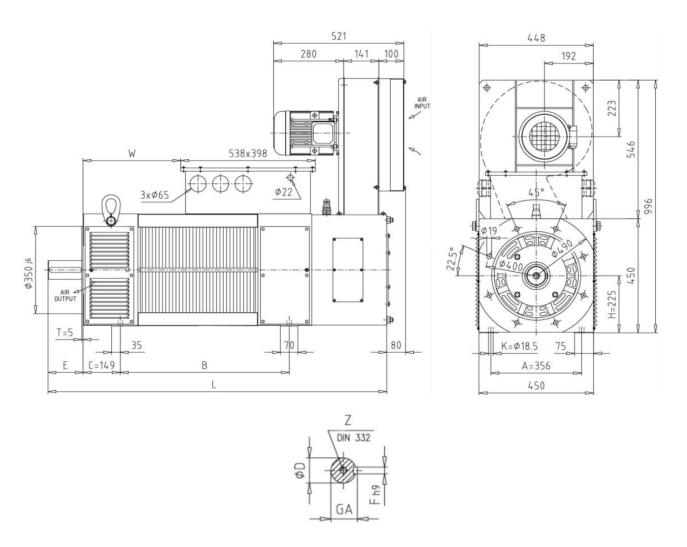

*Lb = lunghezza motore con freno


Tin				F	langia	Э		
Tip	U	P (1)	P (2)	N (1)	N (2)	M (1)	M (2)	S (1)
	S							
VR 160	М	400	250	200	250	250	200	10.5
, R	L	400	350	300	250	350	300	18,5
	Р							


(1) Standard

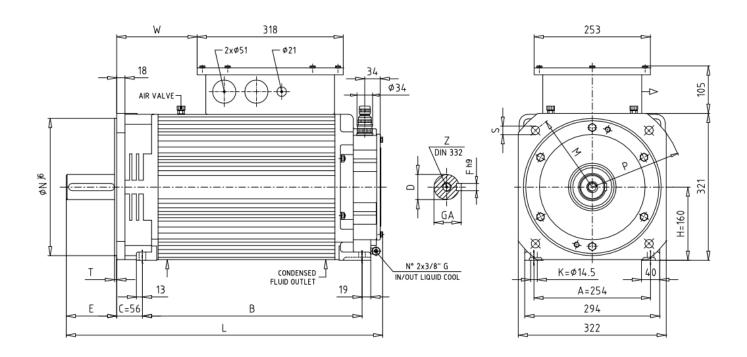
(2) Su richiesta

7.6 Dimensioni di ingombro – VR 180 IP23



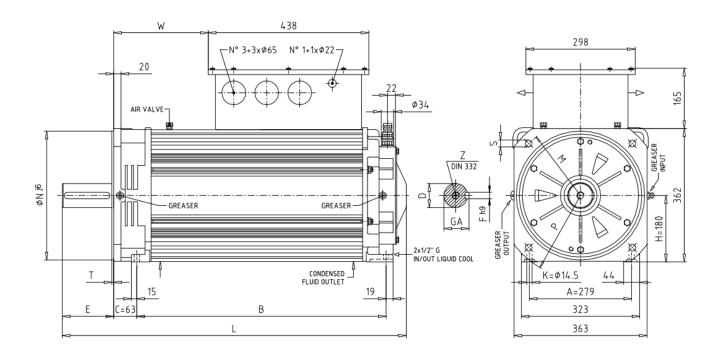
Tin			Lungl	nezza			,	Alberc)	
Tip	0	В	L	Lb*	W	D	E	GA	F	Z
	S	400	1070	1200	174	60 m6		64		
180	М	520	1190	1320	294		140		10	N420
VR	L	590	1260	1390	364	65 m6	140	69	18	M20
	Р	640	1310	1440	414					

*Lb = lunghezza motore con freno


7.7 Dimensioni di ingombro – VR 225 IP23

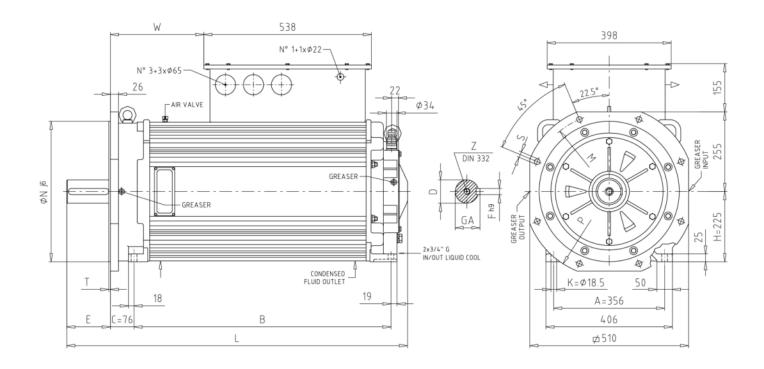
т:				Lung	hezza							Albero)			
Tip	00	В	L (1)	L (2)	Lb* (1)	Lb* (2)	W	D (1)	D (2)	E (1)	E (2)	GA (1)	GA (2)	F (1)	F (2)	Z
	S	555	1335	1365	1485	1515	270									
	М	615	1395	1425	1545	1575	330	75 m6	85 m6	140	170	79,5	90	20	22	
VR 225	L	675	1455	1485	1605	1635	390									M20
	Р	803	1615	/	1765	/	518	85	,	170	,	00	,	22	,	
	X	923	1735	/	1885	/	638	m6	/	170	/	90	/	22	/	

(1) Standard (2) Su richiesta *Lb = lunghezza motore con freno


7.8 Dimensioni di ingombro – VR 160 IP54 / IP55 Raffreddamento a liquido

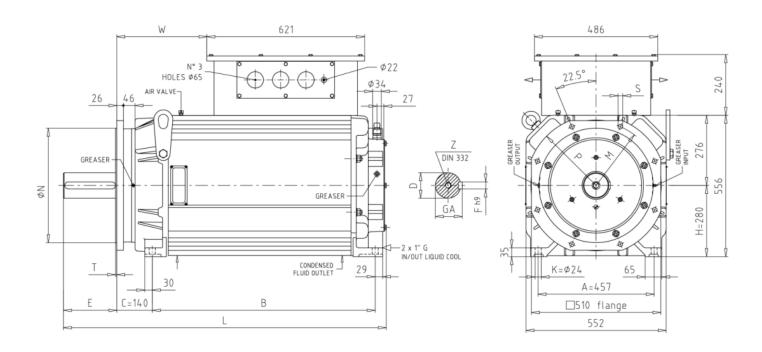
Tin			Lungl	hezza			,	Alberc)		Flangia				
Tip	00	В	L	Lb*	W	D	Е	GA	F	Z	Р	N	М	S	
	М	513	725	925	204										
160	L	563	775	975	254	55 m6	110	59	16	M20	400	300	350	18,5	
\ \ \ \	Р	608	820	1020	299	סווו ככ	110	59	10	IVIZU	400	300	350	18,5	
	х	735	947	1147	426										

*Lb = lunghezza motore con freno


7.9 Dimensioni di ingombro – VR 180 IP54 / IP55 Raffreddamento a liquido

Tip			Lungl	nezza			,	Albero)			Flai	ngia	
Tip	OO	В	L	Lb*	W	D	Е	GA	F	Z	Р	N	М	S
	М	680	940	1140	258									
VR 180	L	750	1010	1210	328	65 m6	140	69	18	M20	450	350	400	18,5
	х	870	1130	1330	448									

*Lb = lunghezza motore con freno


7.10 Dimensioni di ingombro – VR 225 IP54 / IP55 Raffreddamento a liquido

Lunghezza Tipo		Albero			Flangia									
Пμ	O	В	L	Lb*	W	D	E	GA	F	Z	Р	N	М	S
	L	825	1095	1295	300	75 m6	140	79,5	20					
VR 225	Р	905	1205	1405	380	QF C	170	00	22	M20	550	450	500	18,5
	Х	1025	1325	1525	500	85 Mb	35 m6 170	90	22					

*Lb = lunghezza motore con freno

7.11 Dimensioni di ingombro – VR 280 IP54 / IP55 Raffreddamento a liquido

Tipo		Lunghezza			Albero				Flangia				
111	טנ	В	L	W	D	E	GA	F	Z	Р	N	М	S
	S	798	1195	275									
280	М	878	1275	355	100	210	210 106	28 M24	N424	550	450	500	10 5
VR	L	988	1385	465	100	100 210			550	450	500	18,5	
	Р	1048	1445	525									

8. Collegamento elettrico

8.1 Istruzioni sulla sicurezza

ATTENZIONE!

Non eseguire interventi sul motore, sui cavi di collegamento, sui convertitori di frequenza o sugli accessori quali freni, ventilatori o cavi di protezioni termiche quando è presente tensione.

ATTENZIONE!

Per gli ingressi dei cavi, utilizzare pressacavi e tenute conformi al tipo di protezione e al diametro del cavo.

ATTENZIONE!

Per la corretta installazione è responsabile il costruttore dell'impianto. I connettori di segnale e di potenza devono essere schermati.

Il motore deve essere connesso come indicato negli schemi forniti.

Osservare le istruzioni relative alla compatibilità elettromagnetica e le istruzioni del costruttore del convertitore.

Quando si effettua il collegamento assicurarsi che:

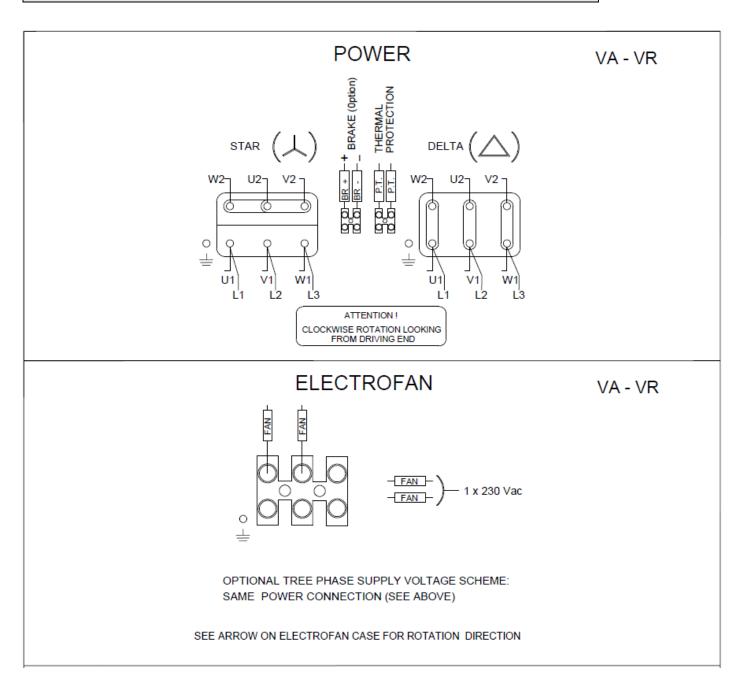
- o I conduttori di collegamento siano adatti all'impiego previsto, alle tensioni e correnti presenti.
- Siano previsti conduttori di collegamento adeguatamente dimensionati, morsetti antitorsione, antitiro e antispinta come pure protezioni antipiega per i conduttori stessi.
- Il conduttore protettivo sia collegato a terra.
- La messa a terra sia eseguita in accordo alle normative locali prima di collegare il motore all'alimentazione.

Con collegamento per mezzo di connettori assicurarsi che:

 Le ghiere dei connettori di segnale e potenza siano ben serrate al fine di garantire un buon contatto ed ermeticità e scatti la protezione di bloccaggio del connettore qualora prevista.

Con collegamento per mezzo di morsettiera bisogna osservare quanto segue:

- o Le estremità dei conduttori devono essere spelate solo fino al capocorda o al morsetto.
- o Le dimensioni dei capicorda devono essere adatte ai morsetti utilizzati sulla morsettiera.
- o Rispettare i valori di coppia di serraggio dei terminali.
- Il conduttore protettivo o il conduttore di messa a terra devono essere collegati.
- Per grandi sezioni, il conduttore di terra può essere diviso in tre conduttori di protezione, posizionati simmetricamente attorno ai conduttori di alimentazione.
- o L'interno della morsettiera deve essere pulito e privo di residui conduttori.
- Evitare la caduta accidentale di dadi, rondelle, residui di conduttori all'interno del motore attraverso il foro passaggio cavi
- Fare attenzione ai fili sporgenti dai conduttori e rispettare i traferri minimi tra le parti in tensione.
- Gli imbocchi non utilizzati devono essere chiusi e gli elementi di chiusura devono essere avvitati a fondo per garantire una tenuta stagna alla polvere e all'acqua.
- Le tenute delle scatole morsettiere devono essere inserite correttamente nelle rispettive sedi al fine di assicurare la classe IP corretta.


La coppia di serraggio necessaria in base al tipo di perno è indicata di seguito:

Dimensione perno	Coppia di serraggio [Nm]
M4	1.6
M5	2.5
M6	4
M8	8
M10	13
M12	20
M14	30
M16	40

ATTENZIONE!

Serrare i cavi sulle basette rispettando le coppie di serraggio corrispondenti al tipo di perno. Tolleranza +0% / -10%

8.2 Trasduttore (Encoder)

Normalmente, sui motori serie VR, viene usato un trasduttore ad albero cavo.

Il corpo del trasduttore è fissato al coperchio posteriore del motore ed è reso libero di oscillare per mezzo di un braccio di reazione che ha il compito di assorbire eventuali disallineamenti assiali/radiali. Per la connessione elettrica è utilizzato un connettore maschio (da pannello o passa paratia) M23 a 12 pin. La parte femmina (volante) con contatti a saldare è fornita di serie insieme al trasduttore.

Assicurarsi sempre che i dati elettrici del trasduttore siano compatibili con quelli dell'inverter che alimenta il motore, che la tensione di alimentazione sia corretta e che i collegamenti siano rispettati.

ATTENZIONE!

Non alimentare i canali di uscita del trasduttore e non fare mai funzionare il motore se il trasduttore ha i cavi di uscita in cortocircuito tra loro o verso massa.

ATTENZIONE!

Non effettuare la prova di alta tensione sui terminali del trasduttore.

Le istruzioni di cablaggio del connettore volante di segnale sono illustrate su un foglio posizionato all'interno della scatola morsettiera del motore.

Usare sempre un cavo schermato per il collegamento con l'inverter.

Durante la saldatura del connettore volante non surriscaldare eccessivamente i contatti. Evitare cortocircuiti tra i contatti del connettore.

ATTENZIONE!

Il mancato rispetto di una delle sopra citate avvertenze può causare l'immediata rottura dell'encoder.

Lo schema di connessine dell'encoder è allegato al connettore volante oppure è inserito all'interno della scatola morsettiera del motore.

Normalmente la massima velocità di rotazione meccanica dell'encoder è di 9000rpm. Non superare questo limite per evitare danni al trasduttore.

Collegamento encoder SICK VFS60:

FEMALE CONNECTOR: SIZE M23 12 PINS (FREE) INTERCONTEC A ST A 013 FS 13 10 0035 000

PIN	SIGNAL TTL/HTL	EXPLANATION
1	B_	Signal line
2	N.C.	Not connected
3	Z	Signal line
4	Z_	Signal line
5	A	Signal line
6	A_	Signal line
7	N.C.	Not connected
8	В	Signal line
9	N.C.	Not connected
10	GND	Encoder ground connection
11	N.C.	Not connected
12	Us	Supply voltage (volt-free to housing)
Screen Screen		Connected to housing on encoder side Connected to ground on control side

8.3 Protettore termico

Di serie è fornita la protezione termica del motore mediante termoprotettore bimetallico 150°C (tensione massima 250Vac, corrente massima 5Aac) incorporato negli avvolgimenti. Il contatto normalmente chiuso si apre quando il termoprotettore raggiunge la temperatura di intervento. Il morsetto di collegamento è normalmente posto all'interno della scatola morsettiera.

Non effettuare la prova di alta tensione sui terminali dei protettori termici.

ATTENZIONE!

Il mancato collegamento delle sonde termiche fa decadere immediatamente la garanzia sul prodotto.

Altre termiche (PT1000, PT100, PTC, KTY84/130) sono disponibili a richiesta e sono collegate all'interno della scatola morsettiera.

9. Trasporto e stoccaggio

9.1 Condizioni di trasporto

Se presenti, utilizzare per il trasporto solo i ganci di sollevamento appositamente previsti.

ATTENZIONE!

Verificare prima del sollevamento che i ganci siano ben avvitati e che il carico sia bilanciato. I ganci sono dimensionati per il peso del motore, non aggiungere altri pesi.

Non usare i ganci se la temperatura è inferiore a -20°C.

ATTENZIONE!

Non sollevare il motore afferrando l'albero: il copri-albero in plastica potrebbe sfilarsi, provocando la caduta del motore, con conseguente rischio di ferite o danni.

Tutti i motori prodotti da Brusatori lasciano la fabbrica in condizioni ottimali, dopo essere stati controllati e testati. All'arrivo, controllare il motore con cura per assicurarsi che non abbia subito danni durante il trasporto. Nel caso si notino anomalie o danni, contattare il fabbricante il prima possibile, e non mettere in servizio il motore.

9.2 Condizioni di stoccaggio

Per un corretto stoccaggio, la temperatura ambiente dev'essere tra -20°C e +50°C.

Se le macchine vengono immagazzinate, posizionarle orizzontalmente e prestare attenzione che l'ambiente sia asciutto, senza polvere e senza vibrazioni.

Ruotare manualmente l'albero motore ogni 2-3 mesi.

Misurare la resistenza di isolamento ad una temperatura compresa tra 20 e 30°C (tensione massima 1000Vdc) prima di avviare il motore per la prima volta, assicurarsi che sia almeno 10 M Ω .

In caso contrario, essiccare l'avvolgimento.

Per l'essiccazione dell'avvolgimento, la temperatura del forno deve essere 80°C per 10-15 ore.

10. Installazione

10.1 Montaggio

ATTENZIONE!

I motori sono progettati esclusivamente per l'installazione in ambienti industriali. Installazioni diverse sono consentite solo se vengono adottati dal costruttore della macchina/impianto tutti gli accorgimenti necessari per garantirne l'utilizzo in condizioni di sicurezza.

Leggere attentamente tutto il manuale prima di eseguire qualsiasi operazione.

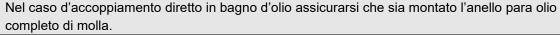
Ogni operazione di montaggio deve essere eseguita da personale qualificato, con strumenti adequati al tipo di operazione.

Provvedere ad un buon fissaggio di piedi e flange.

Per il montaggio dei motori con flangia IM B5 (IM 3001), l'incastellatura di sostegno del motore deve essere dimensionata in modo da evitare il trasferimento di vibrazioni al motore e l'insorgenza di vibrazioni dovute a risonanze. Per il montaggio dei motori IM B3 (IM 1001) e IM B35 (IM 2001), il basamento deve essere dimensionato in modo da evitare il trasferimento di vibrazioni al motore e l'insorgenza di vibrazioni dovute a risonanze.

ATTENZIONE!

Il motore va montato in modo tale da garantire un'adeguata dissipazione del calore senza ostacolare la ventilazione.



Il lato opposto della flangia NON deve essere isolato termicamente, in quanto necessaria alla dissipazione del calore.

Per tutti i motori, esclusi i VA160 S - M è obbligatorio un montaggio IM B35 (IM 2001) o IM B3 (IM 1001) per evitare flessioni e / o deformazioni della flangia / albero motore. Per il montaggio dei motori con piedi IM B3 e IMB35, il basamento deve essere piano, rigido e solido. Per il montaggio di alcuni motori è necessario rimuovere le portine di protezione che devono successivamente essere posizionate come in origine. Durante le fasi di montaggio prestare attenzione a non danneggiare gli avvolgimenti. Se non dovesse essere possibile il montaggio IM B35 per i motori lunghi sarebbe fortemente consigliato l'utilizzo di un supporto posizionato in corrispondenza dello scudo posteriore, il quale non deve essere rigido ma provvisto di molle a tazza o supporti in gomma comprimibile. La spinta che il supporto deve esercitare è quantificabile al 50% del peso totale del motore.

ATTENZIONE!

Nel caso di installazioni in posizione verticale con l'albero rivolto verso l'alto accertarsi che nessun tipo di liquido possa infiltrarsi nel cuscinetto superiore.

ATTENZIONE!

Nel caso di accoppiamento diretto (albero innestato), con ingranaggi e con riduttore è assolutamente indispensabile effettuare un esatto allineamento fra albero motore e albero condotto e tra le flange di accoppiamento. In caso contrario possono manifestarsi forti vibrazioni, irregolarità nel moto, spinte assiali indesiderate e rottura dell'albero motore.

Nel caso di accoppiamento con cinghie, installare il motore con l'albero perfettamente parallelo e allineato a quello della puleggia per evitare spinte assiali sui supporti. Il tiro delle cinghie non deve superare in nessun caso il carico massimo applicabile.

Il carico assiale non deve superare il 20% del massimo carico radiale indicato alla velocità nominale del motore.

ATTENZIONE!

Una tensione eccessiva delle cinghie può provocare un rapido logorio dei cuscinetti e la rottura dell'albero.

Applicare o togliere gli elementi di comando (puleggia, giunto, ruota dentata, ecc.) solo con appositi dispositivi (per esempio, riscaldando l'organo di trasmissione o utilizzando il foro filettato sull'estremità d'albero).

ATTENZIONE!

Non montare mai semigiunti o pulegge utilizzando un martello, né rimuoverli utilizzando una leva infulcrata contro il corpo del motore.

Prima di calettare l'organo di trasmissione togliere la vernice antiruggine dall'albero motore e dalla chiavetta utilizzando alcool od appositi solventi.

È importante che il solvente non penetri all'interno dei cuscinetti.

Ingrassare l'estremità dell'albero e la chiavetta prima di calettare l'organo di trasmissione. Osservare le misure di sicurezza generali per la protezione degli organi di trasmissione contro i contatti.

ATTENZIONE!

Evitare assolutamente di dare colpi o esercitare pressioni sull'estremità d'albero.

ATTENZIONE!

L'utilizzo di componenti danneggiati o inadatti può provocare danni a persone o cose.

La flangia del motore va fissata direttamente alla macchina tramite apposite viti. Rispettare le coppie di serraggio corrette, usando la strumentazione corretta.

10.2 Ventilazione

I motori sono provvisti di elettroventilatore monofase alimentato a 230Vac 50/60Hz oppure elettroventilatore trifase alimentato a 400/460 Vac 50/60Hz.

Il flusso dell'aria può essere in mandata o in aspirazione in base al tipo di motore e di ventilazione scelta. La distanza minima tra la struttura della macchina e lo scarico dell'aria calda del motore deve essere almeno di 80mm.

Per installazioni in condizioni ambientali difficili dovute alla presenza di molta polvere, acqua, forte umidità, nebulizzazioni, vapori d'acqua-olio, ecc. è necessario utilizzare motori con grado di protezione IP54. In queste condizioni di impiego è richiesta la manutenzione periodica del ventilatore e del motore per rimuovere i depositi di sporco dalle palette della girante/ventola e dai canali di ventilazione.

Per i motori con protezione IP23 è indispensabile accertarsi della qualità dell'aria di raffreddamento. Fare in modo che l'aria aspirata dal ventilatore sia sempre fresca, pulita ed asciutta. Per questo tipo di motori è installato un filtro dell'aria sul ventilatore.

Le portine di chiusura devono essere sempre installate prima di procedere all'avviamento del motore. L'aria aspirata/soffiata dal ventilatore deve sempre attraversare completamente lo statore in senso longitudinale e fuoriuscire dalla parte opposta.

10.3 Messa in servizio

Prima della messa in servizio è necessario verificare i seguenti punti:

- o II rotore deve poter ruotare liberamente (se necessario alimentare il freno).
- Deve essere verificata la corretta installazione degli elementi di azionamento.
- Tutti i collegamenti elettrici e gli elementi di collegamento devono essere eseguiti e serrati con cura.
- o II conduttore protettivo e di messa a terra deve essere collegato correttamente.
- Eventuali dispositivi ausiliari devono essere funzionanti (freno, ventilatore, ecc.).
- o E' opportuno prendere adeguate misure di sicurezza contro i contatti con parti in movimento e sotto tensione.

ATTENZIONE!

Assicurarsi che il freno (se previsto) funzioni correttamente.

Il freno è adatto solo per un numero limitato di frenate d'emergenza.

L'impiego come freno di lavoro non è consentito.

ATTENZIONE!

Utilizzare sempre i dispositivi di sicurezza, anche durante le operazioni di test.

ATTENZIONE!

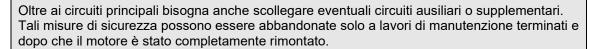
Gli azionamenti possono provocare elevate sollecitazioni di tensione sull'avvolgimento del motore e pertanto è necessario verificare con opportuno oscilloscopio e personale specializzato che i valori di tensione sui terminali della scatola morsettiera non siano troppo elevati a causa di lunghi cablaggi e/o dalla tensione e frequenza di alimentazione dell'inverter.

Si precisa che la causa di tale fenomeno è esterna al motore.

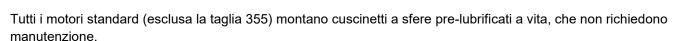
In questi casi si raccomanda di inserire dei filtri adeguati tra inverter e motore per ridurre le sovratensioni $\frac{dV}{dt}$, e l'utilizzo di cavi simmetrici schermati.

ATTENZIONE!

Il presente elenco di verifiche può essere incompleto, possono quindi essere necessarie ulteriori verifiche.


11. Manutenzione

11.1 Istruzioni sulla manutenzione


ATTENZIONE!

Prima di iniziare qualunque lavoro sui motori e prima di aprire qualsiasi copertura di parti attive, assicurarsi di:

- Togliere la tensione al motore.
- o Bloccare la re-inserzione.
- Verificare l'assenza di tensione.
- Verificare la corretta messa a terra.
- Coprire o separare parti adiacenti sotto tensione.

Tutti i lavori vanno eseguiti con motore disinserito.

Ogni 2000 ore di funzionamento è bene verificarne la temperatura e le vibrazioni. Si consiglia comunque di sostituire i cuscinetti dopo circa 20000 ore operative, al più dopo tre anni.

I cuscinetti e i loro grassi devono essere adatti per un campo di temperatura da -30° a +140°C.

Per i motori provvisti di ingrassatore, è necessario rispettare gli intervalli di ri-lubrificazione suggeriti dal costruttore:

INTERVALLO RI-LUBRIFICAZIONE VA160 CON CUSCINETTI A RULLI					
Tipo di cuscinetto	RPM Ore di funzionamento (h)		Quantità di grasso (g)		
	580	6000			
	1000	4500			
NU 312 EC	1500	3500	35		
NO 312 EC	2000	2700	35		
	2500	2000			
	3000	1500			

INTERVALLO RI-LUBRIFICAZIONE VA180 CON CUSCINETTI A RULLI					
Tipo di cuscinetto	RPM	Ore di funzionamento (h)	Quantità di grasso (g)		
	580	6000			
	1000	4500			
NU 314 C3	1500	3500	40		
100 314 C3	2000	2700	40		
	2500	2000			
	3000	1500			

INTERVALLO RI-LUBRIFICAZIONE VA225 CON CUSCINETTI A RULLI					
Tipo di cuscinetto	RPM	Ore di funzionamento (h)	Quantità di grasso (g)		
	580	4000			
	1000	2500			
NU 318	1500	2000	75		
100 310	2000	1500	73		
	2500	1000			
	3000	1000			

INTERVALLO RI-LUBRIFICAZIONE VA280 CON CUSCINETTI A RULLI					
Tipo di cuscinetto	RPM Ore di funzionamento (h)		Quantità di grasso (g)		
	580	4000			
	1000	2500			
NU 222 EC	1500	2000	100		
NO 222 EC	2000	1500	100		
	2500	1000			
	3000	1000			

In caso di cuscinetto a sfere con ingrassatore (opzione disponibile su richiesta) le quantità di grasso per la ri-lubrificazione sono le stesse dei cuscinetti a rulli.

TIPI DI C	TIPI DI GRASSO DA UTILIZZARE PER CUSCINETTI A RULLI E A SFERE					
Costruttore	Tipo di grasso	Composizione	Colore			
Petro-Canada	Peerless LLG	Minerale calcio sulfonato	Rosso			
Petro-Canada	Precision XL EMB	Minerale litio complesso	Blu			
Brugarolas	G.Beslux Komplex M-2	Minerale con polyurea	Crema			
Lubcon	Turmogrease N 502	Minerale con polyurea	Giallo			
Shell	Alvania R3	Minerale al litio	Marrone			

La quantità di grasso indicata in tabella è valida solo per la ri-lubrificazione dei cuscinetti.

Nel caso in cui il grasso fosse compatibile ma non identico a quello presente occorre raddoppiare la quantità in modo da sostituire tutto il grasso presente nel cuscinetto.

La temperatura ambiente, la velocità di funzionamento ed il tipo di lubrificante utilizzato possono influenzare notevolmente la frequenza di intervento. Per maggiori informazioni consultare il nostro ufficio tecnico.

Per le parti di ricambio specificare dettagliatamente tutti i dati di targa del motore o dell'accessorio cui si riferiscono, con eventuali opzioni richieste in sede d'ordine.

ATTENZIONE!

Questo manuale, insieme ad eventuali ulteriori informazioni sulla sicurezza, deve essere conservato!

Se non espressamente autorizzata dal costruttore, qualsiasi riparazione eseguita dall'utilizzatore finale fa decadere ogni responsabilità del costruttore sulla conformità del motore fornito.

Si consiglia di far eseguire i lavori di manutenzione nel nostro centro d'assistenza.

Le superfici lavorate non protette (flange ed estremità dell'albero) devono essere trattate con prodotti anticorrosivi. La pulizia del motore può danneggiarlo se effettuata in modo errato.

Utilizzare solo prodotti appropriati.

Evitare il contatto dei prodotti con paraolio e guarnizioni per evitarne il danneggiamento.

11.2 Risoluzione dei guasti

Nota:

Il presente elenco non può considerarsi completo, per altri dubbi consultare il nostro ufficio tecnico.

PROBLEMA	PROBABILE CAUSA	POSSIBILE SOLUZIONE
	Mancanza di alimentazione	Controllare alimentazione o collegamenti dell'azionamento
Il motore non si avvia	Mancato rilascio del freno	Controllare collegamenti del freno o eventuali guasti
	Problemi a encoder/resolver	Controllare collegamenti o presenza di guasti di encoder/resolver
Il motore funziona lentamente,	Anomalie nel funzionamento dell'inverter, collegamenti errati	Verificare che i valori nominali coincidano con quelli rilevati, controllare funzionamento inverter
o non gira come dovrebbe	Problemi a encoder/resolver	Controllare collegamenti o presenza di guasti di encoder/resolver
	Funzionamento a valori non corretti, problema alla ventilazione	Controllare che le ventole funzionino correttamente
II matera si sumissalda	Mancata attivazione delle sonde termiche	Controllare che le protezioni termiche funzionino correttamente
Il motore si surriscalda	Sovraccarico, alimentazione non corretta, inverter guasto	Verificare che i valori nominali coincidano con quelli rilevati
	Mancato rilascio del freno	Verificare corretto funzionamento del freno
Mancato funzionamento freno	Freno guasto, collegamento errato del freno	Controllare collegamenti o presenza di guasti del freno
Vibrazioni	Allineamento impreciso, cuscinetti usurati, viti di fissaggio allentate, equilibratura di accessori montati sull'albero comando del motore non eseguita	Eseguire nuovamente l'equilibratura degli accessori montati sull'albero comando del motore, stringere eventuali viti allentate, sostituire cuscinetti usurati
Rumorosità eccessiva	Presenza di corpi estranei, parametri non corretti	Verificare presenza di corpi estranei, controllare settaggi inverter
Altri problemi non elencati	Mancato rispetto delle istruzioni o guasto accidentale	Contattare immediatamente il nostro ufficio tecnico

12. Smaltimento

Fare riferimento alla natura del materiale ed alle norme vigenti riguardo lo smantellamento e lo smaltimento del materiale elettrico, in modo da limitare l'impatto sull'ambiente ed evitare danni ecologici.

13. Certificazioni

13.1 Direttiva RoHS

I motori oggetto del presente manuale sono conformi alla Direttiva 2011/65/UE (Direttiva RoHS) e successive Direttive Delegate, riguardanti la limitazione delle sostanze pericolose.

13.2 Direttiva EMC

I motori elettrici non sono oggetto della Direttiva 2014/30/UE (Direttiva EMC) riguardante la compatibilità elettromagnetica.

I motori nel presente manuale sono conformi alla Direttiva EMC solo se equipaggiati con componenti elettronici, essendo stata verificata la conformità EMC dei componenti installati.

13.3 Dichiarazione UE di Conformità

È possibile trovare la versione più recente della Dichiarazione di Conformità sul sito Brusatori.

13.4 Sistema di gestione per la qualità ISO 9001:2015

È possibile trovare la versione più recente del documento sul sito Brusatori.

13.5 Certificato di conformità UL/CSA (opzionale)

È possibile trovare la versione più recente dei certificati di conformità UL e CSA sul sito Brusatori.

14. Contatti

Ragione sociale	Brusatori Srl
Indirizzo	Via Antonio Meucci 5/7, 20012 Cuggiono (MI) – Italy
Telefono	+39 0225068401
Fax	+39 0225060140
Sito web	www.brusatori.eu
E-mail	info@brusatori.eu

Note

Applicazioni

TFSSII F

Stiratoi, asciugatoi, vaporizzaggi, calandre

MACCHINE UTENSILI

Rettifiche, fresatrici, centri di lavoro, segatrici

STAMPA

Macchine per la stampa rotocalco, macchine per la stampa flexografica, linee per converting, accoppiatrici, linee spalmatrici

METALLI

Avvolgitori-svolgitori, caricatori ed impilatori, linee tubi, linee di trafilatura, linee di produzione cavo, linee di taglio longitudinale e trasversale

PLASTICA

Linee di estrusione, macchine tubi, macchine profili, linee stretch, linee nastro, linee per il riciclaggio

CARTA

Avvolgitori-svolgitori, taglierine, ribobinatrici, confezionatrici

Member of Keb Group

Sede operativa | Via Meucci 5/7 | 20012 | Cuggiono (MI) | ITALY

Tel. | +39 02 25068401

E-mail | info@brusatori.eu

Sito web | brusatori.eu