

Motori asincroni per inverter a controllo vettoriale

Serie VT

Tecnologia italiana dal 1953

1. Indice

1. Indice	3
2. Generalità	5
2.1 Informazioni	5
2.2 Simbologia utilizzata	6
2.3 Destinazione d'uso	6
2.4 Direttive europee	7
2.5 Norme armonizzate	7
2.6 Certificazione UL	7
2.7 Taglie disponibili	8
2.8 Targa identificativa	8
2.9 Curve Coppia / Potenza	10
3. Dati tecnici	11
3.1 Caratteristiche Standard	11
3.2 Trasduttore standard (encoder)	12
3.3 Carichi radiali ammissibili	12
3.4 Caratteristiche Opzionali	13
3.5 Forme costruttive	14
3.6 Ventilazione	14
3.7 Freno di stazionamento	16
3.8 Classe di vibrazione e bilanciatura	
3.9 Derating del motore in funzione della temperatura / altitudine	
3.10 Fori per ingresso cavi nella scatola morsettiera	
4. Dati elettrici versione IP54	18
4.1 Caratteristiche motori VT 71 (M-L) IP54	
4.2 Caratteristiche motori VT 80 (S-L) IP54	
4.3 Caratteristiche motori VT 90 (S-L-P-X) IP54	20
4.4 Caratteristiche motori VT 100 (A-S-M-L-P) IP54	
4.5 Caratteristiche motori VT 132 (S-M-L-P) IP54	
5. Dati elettrici versione IP23 S	
5.1 Caratteristiche motori VT 132 (S-M-L-P) IP23 S	
6. Dimensioni di ingombro	
6.1 Dimensioni di ingombro – VT071	
6.2 Dimensioni di ingombro – VT080	
6.3 Dimensioni di ingombro – VT090	
6.4 Dimensioni di ingombro – VT100	
6.5 Dimensioni di ingombro – VT132 IP54	
6.6 Dimensioni di ingombro – VT132 IP23	
7. Collegamento elettrico	
7.1 Istruzioni sulla sicurezza	
7.2 Trasduttore (Encoder)	36

7.3 P	rotettore termico	37
8. Trasp	porto e stoccaggio	37
8.1 C	ondizioni di trasporto	37
8.2 C	ondizioni di stoccaggio	37
9. Instal	llazione	38
9.1 M	Iontaggio	38
9.2 V	entilazione	39
9.3 M	lessa in servizio	40
10. Mar	nutenzione	41
10.1	Istruzioni sulla manutenzione	41
10.1	Risoluzione dei guasti	42
11. Sma	altimento	43
12. Cert	tificazioni	43
12.1	Direttiva RoHS	43
12.2	Direttiva EMC	43
12.3	Dichiarazione UE di Conformità	43
12.4	Sistema di gestione per la qualità ISO 9001:2015	43
12.5	Certificato di conformità UL/CSA (opzionale)	43
13. Con	tatti	43

2. Generalità

2.1 Informazioni

Brusatori propone la serie di motori asincroni VT, a carcassa quadrata, sviluppati per essere collegati a variatori di frequenza.

I motori VT sono motori asincroni trifase 4 poli con avvolgimento a gabbia di scoiattolo e sono disponibili con grado di protezione **IP23** e **IP54**.

Sono disponibili 5 taglie meccaniche (71 - 80 - 90 - 100 - 132) che possono soddisfare una gamma di potenze da 0,37 kW a 55 kW.

I motori serie VT sono studiati esclusivamente per il collegamento ad inverter.

ATTENZIONE!

Tutte le operazioni inerenti al trasporto, all'allacciamento, alla messa in servizio e alla regolare manutenzione devono essere eseguite da personale responsabile qualificato, a conoscenza delle appropriate norme relative alla sicurezza, e che indossi il dovuto equipaggiamento di protezione.

Leggere attentamente tutto il manuale prima di eseguire qualsiasi operazione.

Il presente Manuale è a disposizione dell'utente ed è valido per tutti i motori elettrici Brusatori facenti parte della serie VT.

Un comportamento non conforme può causare gravi danni a persone o cose.

In caso di incertezza, incomprensione o dubbi, interrompere immediatamente le operazioni e rivolgersi al nostro servizio tecnico.

Attenersi alle norme e ai requisiti nazionali, locali e specifici dell'impianto.

ATTENZIONE!

Le esecuzioni speciali e le varianti costruttive possono discostarsi in alcuni particolari tecnici dai motori descritti nel manuale.

Brusatori Srl si riserva il diritto di apportare modifiche al presente documento senza preavviso. Le variazioni costruttive concordate con il cliente hanno la precedenza rispetto al contenuto del manuale.

Il costruttore della macchina in cui verrà incorporato il motore deve inserire, nelle istruzioni destinate all'utente finale, le linee guida sulla sicurezza necessarie.

2.2 Simbologia utilizzata

PERICOLO ATTENZIONE AVVISO

PERICOLO ELETTRICO

PERICOLO CARICHI SOSPESI

PERICOLO SUPERFICIE CALDA

2.3 Destinazione d'uso

I motori elettrici del presente manuale sono conformi alla DIRETTIVA BASSA TENSIONE 2014/35/UE, e destinati all'uso in ambienti industriali standard.

Sono inoltre conformi alla Direttiva 2011/65/UE (Direttiva RoHS) e alla Direttiva EMC 2014/30/UE.

Ogni motore è costruito per essere incorporato in una macchina o per essere assemblato con altri macchinari per costituire una macchina considerata dalla DIRETTIVA MACCHINE 2006/42/CE.

Se utilizzati per altri scopi, è necessario prendere le dovute precauzioni per rendere sicuro il motore nell'ambiente in cui sono destinati.

ATTENZIONE!

Il motore non può essere messo in servizio prima che il macchinario nel quale è incorporato sia dichiarato conforme alla DIRETTIVA MACCHINE 2006/42/CE.

Il fabbricante del macchinario deve inoltre verificare che la macchina sia conforme alla DIRETTIVA EMC 2014/30/UE.

Questo documento è destinato al fabbricante della macchina, non all'utente finale.

Il fabbricante della macchina in cui il motore verrà incorporato ha la responsabilità di fornire il manuale di installazione, uso e manutenzione all'utente finale.

2.4 Direttive europee

DIRETTIVA BASSA TENSIONE (LVD) 2014/35/EU	Conforme
DIRETTIVA SOSTANZE PERICOLOSE 2011/65/EU (RoHS) e successive Direttive Delegate	Conforme
DIRETTIVA MACCHINE 2006/42/CE	Responsabilità del fabbricante della macchina
DIRETTIVA EMC 2014/30/UE	Conforme (se presenti componenti elettronici) Responsabilità del fabbricante della macchina

2.5 Norme armonizzate

CEI EN 60034-1: 2011	Macchine elettriche rotanti Parte 1: Caratteristiche nominali e di funzionamento
CEI EN 60034-5: 2021	Macchine elettriche rotanti Parte 5: Gradi di protezione degli involucri
	delle macchine rotanti (progetto integrale) (Codice IP) - Classificazione
CELEN 60034-6: 1997	Macchine elettriche rotanti Parte 6: Metodi di raffreddamento (Codice
	IC)
	Macchine elettriche rotanti Parte 7: Classificazione delle forme
CEI EN 60034-7: 1997 / A1:2001	costruttive e dei tipi di installazione nonché posizione delle morsettiere
	(Codice IM)
CELEN 60034-8: 2008 / A1:2015	Macchine elettriche rotanti Parte 8: Marcatura dei terminali e senso di
CEI EN 00034-0. 2000 / A1.2013	rotazione
CELEN 60204 1, 2019	Sicurezza del macchinario - Equipaggiamento elettrico delle macchine
CEI EN 60204-1: 2018	Parte 1: Regole generali

2.6 Certificazione UL

Su richiesta	OBJY2/8	Sistema di isolamento UL/CSA	File E316823
Su richiesta	NDMM*	Sistema di isolamento UL/CSA	File 247151

^{*}Disponibile per le taglie 100 S/M/L/P e 132 S/M/L/P denominate VU

2.7 Taglie disponibili

Taglia m	eccanica	Lunghezza motore						
	71	-	M	L	-	-		
	80	S	-	L	-	-		
VT	90	S	-	L	Р	X		
	100	Α	S	M	L	Р		
	132	S	M	L	Р	-		

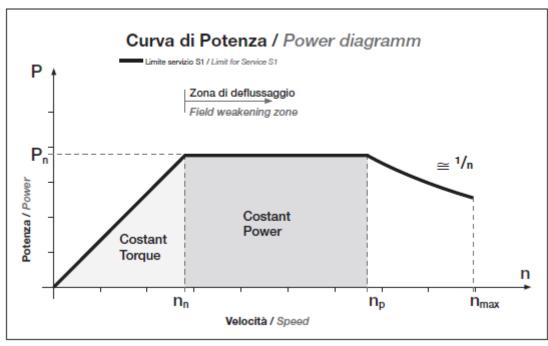
2.8 Targa identificativa

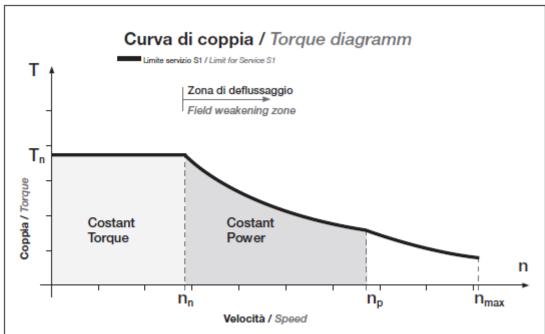
Ogni motore è provvisto della propria targa di identificazione univoca.

La targa viene apposta sul motore sotto forma di etichetta adesiva, e sono indicati i valori nominali e le condizioni operative. Verificare prima della messa in servizio che i dati corrispondano con quelli previsti.

La targhetta deve essere sempre visibile sul motore e NON ne è permessa la rimozione.

∠ Br	tol	ri	3 - P	HASE A	Made in Italy			
Memb	er of K	EB Gro	B Group				eries	
Type VT 132 M	C	od. VT1	32M	6Q0008	8	S/N 0215	522/01	
Pn 17 Kw	Hz	V		In A	lo A	Poles 4	IP 54	
nn 1581 rpm	54	380	_	35,2	12,3	IMB35	IC 416	
Tn 103 Nm	54	220	Δ	57,7	21,3	Cosfi 0,88	Eff. 87,8 %	
np 3900 rpm	Induct	(ph/ph) Y	4 mH Duty S1				
nmax 6400 rpm Fan RB2C250 1 ph		**		0,33 OH z 1.14	nm A IP4	Slip 32 rpm 4		
						Date 05	/2025	
Ins. class F	Jm 0,0	73 Kgn	n^2		EC 34-1	Weight	115 Kg	


Nota:


L'aspetto delle targhette mostrate nel presente manuale può differire da quello reale.

Legenda targhetta

Туре	Tipo di motore	
Cod.	Codice motore Brusatori	
S/N	Numero di serie del motore	
P _N Kw	Potenza nominale in servizio	
Hz	Frequenza nominale	
V	Tensione nominale	
I _N A	Corrente alla velocità nominale	
I ₀ A	Corrente a rotore bloccato	
Poles	Numero di poli	
IP	Grado di protezione	
nn rpm	Velocità nominale	
IM	Forma costruttiva	
IC	Indice di raffreddamento	
T _N Nm	Coppia alla velocità nominale	
Cosfi	Fattore di potenza	
Eff. %	Efficienza	
np rpm	Velocità a potenza costante	
Induct.	Induttanza fase-fase	
Duty	Tipo di servizio	
nmax	Velocità massima meccanica	
Resist	Resistenza fase-fase	
Slip	Scorrimento	
Fan	Caratteristiche ventilatore	
Feedback type	Tipo trasduttore + dati trasduttore	
Date	Mese / Anno produzione	
Ins. class	Classe di isolamento avvolgimenti	
Jm	Momento d'inerzia del rotore	
IEC	Norma di riferimento	
Weight	Peso motore	
Brake	Tipo di freno (solo se presente)	

2.9 Curve Coppia / Potenza

3. Dati tecnici

3.1 Caratteristiche Standard

Avvolgimento	Trifase rinforzato per applicazione a inverter
Isolamento	Classe F secondo CEI EN 60034-1
Sovratemperatura	Classe F secondo CEI EN 60034-1
Dimensionamento	Classe F secondo CEI EN 60034-1
Tipo di servizio	S1 - Continuo
Grado di protezione	IP23 secondo CEI EN 60034-5
(CEI EN 60034-5)	IP54 secondo CEI EN 60034-5
Temperatura ambiente	Da -5 a +40 °C
Condizioni ambientali	Altitudine massima: 1000m sul livello del mare
	Umidità: ≤90% (senza condensazione)
	Temperatura di trasporto / stoccaggio: da -20 a +70 °C
Colore	Nero RAL 9005
Raffreddamento	IC 416 Ventilatore monofase montaggio assiale per IP54
(CEI EN 60034-6)	IC 06 Ventilatore trifase montaggio radiale per IP23
Ventilazione	Avviamento diretto del ventilatore all'inserzione
	dell'alimentazione
Grado di vibrazione	Grado A
(CEI EN 60034-14)	Equilibratura con mezza chiavetta
Protezione termica	Termoprotettore con contatto normalmente chiuso 140°C
	(Tensione max 250 Vac, corrente max 6 Aac con cos =1)
Forma costruttiva	B5 IM 3001 VT 71 – VT 80 – VT 90
(CEI EN 60034-7)	IM B35 IM 2001 VT 100 – VT 132
Cuscinetti	Cuscinetti a sfere lubrificati a vita
Sensore di posizione	Predisposizione encoder (albero D.14 mm)
Posizione di servizio	Qualunque
Connessione di potenza	Basetta trifase in scatola morsettiera
Connessione di segnale	Connettore M23
Posizione scatola morsettiera	In alto

^{*}Funzionamenti a temperature o altitudini superiori sono possibili con derating (vedi paragrafo 3.9).

ATTENZIONE!

Il motore può essere utilizzato solo nelle applicazioni per le quali è stato progettato. I valori nominali e le condizioni operative sono indicati sulla targhetta del motore, verificare prima della messa in servizio che i dati corrispondano con quelli previsti.

Taglia motore		VT71	VT80	V	Г90	VT100	VT132	
Statore	Materiale	Lamierino Magnetico						
Statore	Avv. Statorico	Avvolgimento in rame con isolamento speciale per utilizzo con inverter						
Carcassa	Materiale			Allur	minio			
Scudo Posteriore	Tipologia Materiale	A	Alluminio		Allumi	nio + bussola a	ecciaio	
	D-End (sfere)	6004 ZZ	6205 ZZ	620	6 ZZ	6209 ZZ C3	6310 ZZ C3	
Cuscinetti a sfere	ND-End (sfere)	6203 ZZ	6204 ZZ	630	4 ZZ	6306 ZZ C3	6209 ZZ C3	
(standard)	Ingrassaggio			Ingrass	ati a vita	a		
	Bloccaggio Assiale	-	-			D-En	d side	
	D-End (rulli)		-	-		NU 209	NU 310 ET	
Cuscinetti a rulli	D-Elia (Iaiii)	-				ECP C3	C3	
(opzionale)	ND-End (rulli)	-	-		-	-	-	
(opzioriale)	Ingrassaggio	A lubrificazione periodica tramite ingrassatore					•	
	Bloccaggio Assiale			ND-Er	nd side			
Scatola Morsettiera		Polimero			Alluminio	Alluminio		
		Allum					Alluminio +	
Flangia		Alluminio			bussola in	bussola in		
	acciaio acciai					acciaio		
Carter Ventilazione		Acciaio Zincato						
Rotore		Lamierino magnetico + Alluminio						

3.2 Trasduttore standard (encoder)

Taglie su cui è disponibile	71 - 80 - 90 - 100 - 132
Tensione di alimentazione	5 - 32 V
Circuito di uscita	HTL / TTL
Risoluzione	65.536 imp./rot.
Corrente massima con carico	Max 30 mA
Massima frequenza di utilizzo	820 kHz
Massima velocità di rotazione	9000 rpm
Protezione	IP65 acc. IEC 60529
Temperatura di lavoro	-30 to +100 °C
Umidità relativa massima	90%
Connettore	M23

3.3 Carichi radiali ammissibili

Le tabelle forniscono i carichi radiali ammissibili in Newton, assumendo una forza assiale nulla. La forza radiale viene applicata al centro dell'albero per una durata del cuscinetto di **20000** ore. I motori sono montati in forma costruttiva IM B3 in posizione orizzontale. Attenzione: evitare shock assiali sull' albero durante il montaggio.

Cuscinetti a sfera:

Tipo	Distanza dalla spalla dell'albero (mm)	Velocità 500 rpm (N)	Velocità 1000 rpm (N)	Velocità 1500 rpm (N)	Velocità 2000 rpm (N)	Velocità 2500 rpm (N)	Velocità 3000 rpm (N)	Velocità 3500 rpm (N)	Velocità 4000 rpm (N)
VT71	15	840	700	610	550	510	480	460	440
VT80	20	1290	1020	890	810	750	700	670	640
VT90	25	1750	1380	1200	1090	1010	950	900	860
VT100	40	2950	2300	2000	1800	1700	1600	1500	1400
VT132	55	5600	4400	3800	3450	3200	3000	2800	2700

Cuscinetti a rulli:

Tipo	Distanza dalla spalla dell'albero (mm)	Velocità 500 rpm (N)	Velocità 1000 rpm (N)	Velocità 1500 rpm (N)	Velocità 2000 rpm (N)	Velocità 2500 rpm (N)	Velocità 3000 rpm (N)	Velocità 3500 rpm (N)	Velocità 4000 rpm (N)
VT100	40	7888	6393	5653	5179	4839	4578	4368	4193
VT132	55	8010	8010	8010	8010	8010	7810	7448	7148

3.4 Caratteristiche Opzionali

Taglia	71	80	90	100	132 IP54	132 IP23
Modalità di raffreddamento						
Ventilatore trifase per motori IP54	-	-	-	Х	Х	S
Varianti ed accessori						
Filtro aria (solo per la taglia VT 132 IP23)	-	-	-	-	-	х
Altre sonde termiche	R	R	R	R	R	R
Albero speciale (diametro, senza chiavetta)	Х	х	Х	Х	x	x
Paraolio lato albero comando	Х	Х	Х	Х	х	х
Classe di vibrazione B	х	х	Х	Х	x	х
Cuscinetto a rulli lato albero comando (per tiro cinghia)	-	-	-	Х	х	х
Cuscinetto isolato lato opposto albero comando	-	-	-	-	x	x
Freno di stazionamento	Х	Х	Х	Х	х	х
Vernice speciale (colori RAL)	х	х	Х	Х	x	х
Isolamento rinforzato	S	S	S	S	S	S
Protezione speciale anticorrosione	R	R	R	R	R	R
Posizione scatola morsettiera a destra	Х	Х	Х	Х	х	х
Posizione scatola morsettiera a sinistra	х	х	Х	Х	x	х
Motori con sistema di isolamento UL (File 247151)	х	х	х	х	х	х
Esecuzioni speciali su specifiche del cliente	х	х	Х	Х	x	х
Encoder						
Encoder sinusoidale 1Vpp – 1024 imp./giro	Х	Х	Х	Х	х	х
Encoder assoluto monogiro	Х	Х	Х	Х	Х	Х
Encoder assoluto multigiro	х	х	х	Х	Х	Х
Resolver 2 poli-7Vrms - rapp. Trasformazione 0.5	X*	X*	X *	X*	X*	х*

S: standard x: possibile R: su richiesta

^{*}Non disponibile per motori con freno

3.5 Forme costruttive

Taglia motore	71	80	90	100	132 IP54	132 IP23
Standard	IM B5	IM B5	IM B5	IM B35	IM B35	IM B35
Opzionale su richiesta	IM B35	IM B35	IM B35	-	-	-
Opzionale su richiesta	IM B14	IM B14	IM B14	-	-	-

3.6 Ventilazione

I motori con protezione IP54 sono dotati di elettroventilatore assiale montato in asse al motore.

I motori con protezione IP23 sono dotati di elettroventilatore centrifugo montato radialmente al motore.

Dati ventilatori standard:

Taglia motore	VT71 VT80S	VT80L VT90S	VT90L /P/X	VT100	VT132	VT132	Unità
Certificazione	CE/UL/CSA	CE/UL/CSA	CE	CE/UL/CSA	CE/UL	CE	-
Protezione motore	IP54	IP54	IP54	IP54	IP54	IP23	IP
Numero di fasi	1	1	1	1	1	3	N
Tensione di alimentazione	230 (Vac)	230 (Vac)	230 (Vac)	230 (Vac)	230 (Vac)	400Y/230Δ 480Y/277Δ	V
Frequenza	50÷60	50÷60	50÷60	50÷60	50÷60	50÷60	Hz
Velocità	2650÷3100	2750÷3100	2800÷3250	2350÷2500	2500÷2750	2800÷3360	min- 1
Potenza	19÷17	18÷17	45÷39	52÷65	245	370÷440	w
Corrente assorbita	0,12÷0,1	0,11÷0,19	0,3÷0,25	0,23÷0,29	1,14	1.0Y/1.7Δ 1.0Y/1.7Δ	А
Distanza minima per entrata/uscita aria	50	50	50	100	120	120	mm
Portata	152÷180	178÷200	340÷390	540÷590	1320÷1450	612	m³/h
Prevalenza	70÷80	80÷65	150÷150	350÷460	530÷670	800	Pa
Protezione termica da sovraccarico	Impedenza	Impedenza	Termico	Termico	Termico	-	-
Grado di protezione ventilatore	IP20	IP20	IP54	IP44	IP44	IP55	IP
Condensatore	-	-	-	1,5 µF	8 µF	-	-

Dati ventilatori opzionali:

Taglia motore	VT71	VT80	VT100	VT132	Unità
Certificazione	CE/UL/CSA	CE/UL/CSA	CE/UL/CSA	CE/UL/CSA	-
Protezione motore	IP54	IP54	IP54	IP54	IP
Numero di fasi	1	1	1	3	N
Tensione di alimentazione	24 (Vdc)	24 (Vdc)	400Y/460Y	400Y	V
Frequenza	0	0	50÷60	50÷60	Hz
Velocità	3000	5000	2550÷2900	2600÷2800	min-1
Potenza	3,2	18,5	50÷80	215÷310	W
Corrente assorbita	0,132	0,77	0,09÷0,11	0,38÷0,48	A
Distanza minima per entrata/uscita aria	50	50	100	120	mm
Portata	168	260	550÷640	1400÷1500	m³/h
Prevalenza	75	265	375÷500	650÷850	Pa
Protezione termica da sovraccarico	Restart	Impedenza	Termico	-	-
Grado di protezione ventilatore	IP20	IP20	IP44	IP44	IP
Condensatore	-	-	-	-	-

3.7 Freno di stazionamento

Su richiesta è possibile montare un freno di stazionamento sullo scudo posteriore del motore.

Il freno è di tipo elettromeccanico a molle con azione frenante per mancanza d'alimentazione.

Il freno deve essere inserito e disinserito a rotore fermo.

Dati freni:

Taglia motore	VT71	VT80	VT90	VT100	VT132 IP54 VT132 S/M/L IP23	VT132P IP23	Unità
Coppia frenante statica	6	6	23	60	200	400 3)	Nm
Tensione di alimentazione +/- 5%	24	24	24	24	24	24	Vdc
Potenza assorbita	20	20	32	50	60	60	W
Velocità massima d' intervento	3000	3000	3000	3000	3000	3000	rpm
Max. lavoro con 1 intervento/ora	3	3	10	35	50	90	kJ
Inerzia del freno	0,15	0,15	2	7	28	60	Kgcm ²
Massa aggiuntiva	1,2	1,2	3,9	10	20	23	Kg

- 1) A freno non rodato il valore della coppia frenante può discostarsi del +/- 20% dal valore nominale
- 2) Tensioni richieste sono disponibili su richiesta
- 3) Per montaggio verticale (V1 V3, ecc.) consultare il nostro ufficio tecnico

3.8 Classe di vibrazione e bilanciatura

I motori VT sono costruiti per soddisfare la classe di vibrazione A e sono bilanciati con mezza chiavetta.

Il livello di vibrazione secondo la classe B è disponibile su richiesta.

Il livello di vibrazione è espresso in spostamento e velocità, rms, utilizzando il metodo della sospensione in aria e senza carico applicato.

	Altezza d' asse (mm)						
	71 < H ≤ 132						
Grado di vibrazione	Spostamento	Vel					
VIBIGEIOTIO	μm	mm/s					
Α	45	2,8					
В	18	1,1					

3.9 Derating del motore in funzione della temperatura / altitudine

I motori sono designati per operare ad una temperatura compresa tra i -5°C e 40°C e ad una altitudine di 1000 m sopra il livello del mare.

Se l'utilizzo avviene ad altitudine oppure a temperatura più alte il motore deve avere un derating secondo le indicazioni riportate nella tabella sotto:

	Temperatura (°C)					
Altitudine (m)	30	40	50	60		
1000	1	1	0,9	0,8		
2000	1	0,93	0,85	0,75		
3000	0,93	0,85	0,77	0,64		
4000	0,85	0,73	0,65	0,5		

3.10 Fori per ingresso cavi nella scatola morsettiera

I motori VT sono forniti con i seguenti fori sulla scatola morsettiera: 2 per la potenza e 1 per gli ausiliari (solo per la taglia 132).

Le dimensioni dei fori sono secondo i dati riportati nella tabella sotto:

Motore	Dimensioni fori
VT 71	2 x M20 x 1,5
VT 80	2 x M20 x 1,5
VT 90	2 x M20 x 1,5
VT 100	2 x M32 x 1,5
VT 132	2 x Ø40,5 + 2 x Ø20,5

4. Dati elettrici versione IP54

4.1 Caratteristiche motori VT 71 (M-L) IP54

Grado di protezione	IP 54		Ventilazione	IC 06	
Inerzia rotorica J (kgm²)		M 0,00076 - L 0,00087			
Velocità massima meccanica	VT 71 M	7000	Door makeur (lan)	VT 71 M	8,5
nmax (rpm)	VT 71 L	7000	Peso motore (kg)	VT 71 L	10
Cuscinetto lato D-End	600	4 ZZ	Cuscinetto lato ND-End	6203 DDU	
Classe di vibrazione	A	4	Forma costruttiva	IM 3001 (B5)	
Classe di isolamento	ŀ	1	Sovratemperatura Classe	F	
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 140° C	

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	0,12 / 0,10
Numero di fasi	1	Montaggio	Assiale
Tensione (V)	230	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	19 / 17	Grado di protezione (IP)	IP20
Distanza minima per entrata / uscita	50		

VT 71 M

n _N Velocità nominale	1342	2508	2907	rpm
P _N Potenza nominale	0,37	0,64	0,76	kW
V _N Tensione nominale	376	400*	400	V
I _N Corrente alla Potenza nominale	1,16	1,86*	2,45	Α
T _N Coppia alla velocità nominale	2,66	2,5	2,5	Nm
T _{max} Coppia massima	5	5	5	Nm
n _P Velocità massima a Potenza costante	2800	5000	5500	rpm

VT 71 L

n _N Velocità nominale	1500	2670	3000	rpm
P _N Potenza nominale	0,63	1,09	1,1	kW
V _N Tensione nominale	356	356*	380	V
I _N Corrente alla Potenza nominale	2,16	3,75*	2,85	Α
T _N Coppia alla velocità nominale	4	4	4	Nm
T _{max} Coppia massima	8	8	8	Nm
n _p Velocità massima a Potenza costante	4500	7000	5500	rpm

^{*} Motore connesso a triangolo (Δ)

4.2 Caratteristiche motori VT 80 (S-L) IP54

Grado di protezione	IP 54		Ventilazione	IC 06		
Inerzia rotorica J (kgm²)		S 0,0017 - L 0,0024				
Velocità massima meccanica	VT 80 S	7000	Peso motore (kg)	VT 80 S	11	
nmax (rpm)	VT 80 L	7000		VT 80 L	13	
Cuscinetto lato D-End	620	5 ZZ	Cuscinetto lato ND-End	620	6204 ZZ	
Classe di vibrazione	A	4	Forma costruttiva	IM 3001 (B5)		
Classe di isolamento	ŀ	1	Sovratemperatura Classe	F		
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 140° C		

CARATTERISTICHE VENTILATORE

Eroguenza (Hz)	50 / 60		Corrento (A)	VT 80 S	0,12/0,10
Frequenza (Hz)	50 /	/ 60	Corrente (A)		0,11/0,19
Numero di fasi		1	Montaggio		iale
Tensione (V)	230		Tipo di ventilazione	Aspirazione forzata	
Potonza (W)	VT 80 S	19 / 17	Grado di protezione (IP)	IP20	
Potenza (W)	VT 80 L	18 / 17	Grado di protezione (IP)		
Distanza minima per entrata / uscita aria (mm)					0

VT 80 S

n _N Velocità nominale	1349	2515	2910	rpm
P _N Potenza nominale	0,75	1,30	1,5	kW
V _N Tensione nominale	372	380*	380	V
I _N Corrente alla Potenza nominale	2,13	3,37*	4,33	Α
T _N Coppia alla velocità nominale	5,3	5	5	Nm
T _{max} Coppia massima	10	10	10	Nm
n _p Velocità massima a Potenza costante	2500	4400	5000	rpm

VT 80 L

n _N Velocità nominale	1349	2520	2910	rpm
P _N Potenza nominale	1,1	1,91	2,2	kW
V _N Tensione nominale	382	400*	400	V
I _N Corrente alla Potenza nominale	2,79	5,22*	5,84	Α
T _N Coppia alla velocità nominale	7,79	7,5	7,5	Nm
T _{max} Coppia massima	15	15	15	Nm
n _p Velocità massima a Potenza costante	2600	4400	5000	rpm

^{*} Motore connesso a triangolo (Δ)

4.3 Caratteristiche motori VT 90 (S-L-P-X) IP54

Grado di protezione	IP 54		Ventilazione	IC 416 (CEI EN 60034-6)	
Inerzia rotorica J (kgm²)		S (),0024 - L 0,0033 - P 0,0043 - X 0,00	57	
Velocità massima meccanica nmax (rpm)	VT 90 S	7000		VT 90 S	15,5
	VT 90 L	7000	Dono motoro (kg)	VT 90 L	20
	VT 90 P	7000	Peso motore (kg)	VT 90 P	24
	VT 90 X	7000		VT 90 X	30
Cuscinetto lato D-End	620	6 ZZ	Cuscinetto lato ND-End	6304 ZZ	
Classe di vibrazione	A	4	Forma costruttiva	IM 3001 (B5)	
Classe di isolamento	Н		Sovratemperatura Classe	F	
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 140° C	

CARATTERISTICHE VENTILATORE

			Corrente (A)		VT 90 S	0,12/0,10
Frequenza (Hz)	50 ,	/ 60			VT90	0.11/0.10
				L/P/X	0,11/0,19	
Numero di fasi	,	1	Montaggio		Assiale	
Tensione (V)	23	30	Tipo di ventilazione		Aspirazione forzata	
	VT 90 S	18 / 17	Grado di	VT 90 S		IP20
Potenza (W)	VT 90 L / P / X	45 / 39	protezione (IP)	VT 90 L / P / >	(IP54
Distanza minima per entrata / uscita aria (mm)						0

VT 90 S

n _N Velocità nominale	1327	2530	3000	rpm
P _N Potenza nominale	1,5	2,6	3,15	kW
V _N Tensione nominale	390	400*	400	V
I _N Corrente alla Potenza nominale	3,8	5,9*	7,1	Α
T _N Coppia alla velocità nominale	10,77	10	10	Nm
T _{max} Coppia massima	25	25	25	Nm
n _p Velocità massima a Potenza costante	2500	4350	6000	rpm

VT 90 L

n _N Velocità nominale	1336	2487	3000	rpm
P _N Potenza nominale	2,2	3,9	4,74	kW
V _N Tensione nominale	390	400*	400	V
I _N Corrente alla Potenza nominale	5,15	8,8*	10,3	Α
T _N Coppia alla velocità nominale	15,36	15	15	Nm
T _{max} Coppia massima	29	29	29	Nm
n _p Velocità massima a Potenza costante	2500	4350	5500	rpm

^{*} Motore connesso a triangolo (Δ)

VT 90 P

n _N Velocità nominale	1324	2505	2898	rpm
P _N Potenza nominale	3	5,2	6	kW
V _N Tensione nominale	390	400*	400	V
I _N Corrente alla Potenza nominale	6,77	11*	13,2	Α
T _N Coppia alla velocità nominale	21,6	20	20	Nm
T _{max} Coppia massima	35	35	35	Nm
n _p Velocità massima a Potenza costante	3500	4000	5000	rpm

VT 90 X

n _N Velocità nominale	1336	2535	2820	rpm
P _N Potenza nominale	4	7	8	kW
V _N Tensione nominale	372	400*	400	V
I _N Corrente alla Potenza nominale	9,3	15,7*	19	Α
T _N Coppia alla velocità nominale	28,7	27	27	Nm
T _{max} Coppia massima	40	40	40	Nm
n _p Velocità massima a Potenza costante	2700	4800	5400	rpm

^{*} Motore connesso a triangolo (Δ)

4.4 Caratteristiche motori VT 100 (A-S-M-L-P) IP54

Grado di protezione	IP 54		Ventilazione	IC 416 (CEI EN 60034-6)		
Inerzia rotorica J (kgm²)		A 0,009 - S 0,013 - M 0,016 - L 0,020 - P 0,025				
Velocità massima meccanica nmax (rpm) *	VT 100 A	7000 (6700) **		VT 100 A	38	
	VT 100 S	7000 (6700) **		VT 100 S	45	
	VT 100 M	7000 (6700) **	Peso motore (kg)	VT 100 M	55	
	VT 100 L	7000 (6700) **		VT 100 L	59	
	VT 100 P	6700		VT 100 P	72	
Cuscinetto lato D-End **	6209	ZZ C3	Cuscinetto lato ND-End	6306 ZZ C3		
Classe di vibrazione	A	Α	Forma costruttiva	IM 2001 (B35)		
Classe di isolamento	ŀ	1	Sovratemperatura Classe	F		
Tensione di alimentazione nominale (V)	400		Protezione termica	NC 140° C		

^{*}su richiesta (opzione alta velocità da valutare con nostro ufficio tecnico)

CARATTERISTICHE VENTILATORE

		-	
Frequenza (Hz)	50 / 60	Corrente (A)	0,23 / 0,29
Numero di fasi	1	Montaggio	Assiale
Tensione (V)	230	Tipo di ventilazione	Aspirazione forzata
Potenza (W)	52 / 65	Grado di protezione (IP)	IP44
Distanza minima per entrata / uscita	100		

VT 100 A

n _N Velocità nominale	1000	1362	2020	2540	2938	rpm
P _N Potenza nominale	2,6	4	5,3	6,5	7,5	kW
V _N Tensione nominale	380	392	380	380*	380	V
I _N Corrente alla Potenza nominale	5,81	9,09	10,6	14,5*	15,9	Α
T _N Coppia alla velocità nominale	24,8	27,4	25	24,6	24,5	Nm
T _{max} Coppia massima	50	53	50	49	49	Nm
n _p Velocità massima a Potenza costante	2000	2800	4200	5000	5500	rpm

VT 100 S

n _N Velocità nominale	607	1015	1498	2013	2520	3000	rpm
P _N Potenza nominale	2,6	4,3	6	7,8	9	10,2	kW
V _N Tensione nominale	380	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	7,0	9,7	13,0	16,4	18,5	20,7	Α
T _N Coppia alla velocità nominale	40,9	40,5	38,2	37	34,1	32,5	Nm
T _{max} Coppia massima	80	90	95	100	90	85	Nm
n _p Velocità massima a Potenza costante	1200	2250	3750	5400	6500	7000	rpm

^{*} Motore connesso a triangolo (Δ)

^{**}su richiesta disponibili i cuscinetti a rulli per applicazioni con tiro cinghia (con cuscinetti a rulli la velocità massima meccanica diminuisce)

VT 100 M

n _N Velocità nominale	604	1022	1508	2018	2524	3003	rpm
P _N Potenza nominale	3,1	5,2	7,2	9,1	10,5	11,8	kW
V _N Tensione nominale	380	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	7,9	12,1	16,4	20,0	21,6	24,0	Α
T _N Coppia alla velocità nominale	49	48,6	45,6	43,1	39,7	37,5	Nm
T _{max} Coppia massima	105	115	120	120	105	100	Nm
n _p Velocità massima a Potenza costante	1300	2500	4150	5750	6750	7000	rpm

VT 100 L

n _N Velocità nominale	603	1014	1513	2026	2504	3010	rpm
P _N Potenza nominale	3,8	6,2	8,5	10,8	12,2	13,3	kW
V _N Tensione nominale	380	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	10,3	14,9	19,1	23,3	25,2	27,1	Α
T _N Coppia alla velocità nominale	60,2	58,4	53,6	50,9	46,5	42,2	Nm
T _{max} Coppia massima	135	130	160	160	140	120	Nm
n _p Velocità massima a Potenza costante	1350	2250	4500	6450	7000	7000	rpm

VT 100 P

n _N Velocità nominale	609	1020	1519	2000	2502	3010	rpm
P _N Potenza nominale	4,6	7,3	10	12,5	14	15,5	kW
V _N Tensione nominale	380	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	11,8	17,0	22,0	28,5	29,1	32,3	Α
T _N Coppia alla velocità nominale	72,1	68,3	62,9	59,7	53,4	49,2	Nm
T _{max} Coppia massima	175	195	200	200	160	140	Nm
n _p Velocità massima a Potenza costante	1450	2900	4850	6650	6700	6700	rpm

4.5 Caratteristiche motori VT 132 (S-M-L-P) IP54

Grado di protezione	IP	54	Ventilazione	IC 416 (CEI EN 60034-6)	
Inerzia rotorica J (kgm²)					
	VT 132 S	6400 (5000) **		VT 132 S	91
nmax (rpm) * 6400	6400 (5000) **	Dana mataya (Ira)	VT 132 M	115	
	VT 132 L	6400 (5000) **	Peso motore (kg)	VT 132 L	146
	VT 132 P	5000 (5000) **		VT 132 P	174
Cuscinetto lato D-End **	6310	ZZ C3	Cuscinetto lato ND-End	6209 ZZ C3	
Classe di vibrazione	,	4	Forma costruttiva	IM 200	1 (B35)
Classe di isolamento	Н		Sovratemperatura Classe	F	
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	40°C

^{*}su richiesta (opzione alta velocità da valutare con nostro ufficio tecnico)

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	1,14	
Numero di fasi	1	Montaggio	Assiale	
Tensione (V)	230	Tipo di ventilazione	Aspirazione forzata	
Potenza (W)				
Distanza minima per entrata / uscita	120			

VT 132 S

n _N Velocità nominale	1066	1581	2104	2654	3167	rpm
P _N Potenza nominale	8	12	17	20	24	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	18,1	25,7	36,4	42,2	50,7	Α
T _N Coppia alla velocità nominale	71,7	72,5	77,2	72	72,4	Nm
T _{max} Coppia massima	190	195	220	210	220	Nm
n _p Velocità massima a Potenza costante	2800	4200	6000	6400	6400	rpm

VT 132 M

n _N Velocità nominale	1059	1581	2101	2652	3150	rpm
P _N Potenza nominale	12	17	22	28	33	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	26,3	35,2	46,2	57,8	67,9	Α
T _N Coppia alla velocità nominale	108	103	100	101	100	Nm
T _{max} Coppia massima	290	250	300	300	300	Nm
n _p Velocità massima a Potenza costante	2800	3900	6400	6400	6400	rpm

^{**}su richiesta disponibili i cuscinetti a rulli per applicazioni con tiro cinghia (con cuscinetti a rulli la velocità massima meccanica diminuisce)

VT 132 L

n _N Velocità nominale	1062	1581	2101	2651	3152	rpm
P _N Potenza nominale	17	24	32	38	44	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	36,4	49,2	65,2	80,4	90,2	Α
T _N Coppia alla velocità nominale	153	145	145	137	133	Nm
T _{max} Coppia massima	410	370	390	480	420	Nm
n _p Velocità massima a Potenza costante	2800	4100	5600	6400	6400	rpm

VT 132 P

n _N Velocità nominale	1060	1584	2102	2653	3153	rpm
P _N Potenza nominale	20	28	37	44	50	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	42,5	57,3	74,6	88,7	99,7	Α
T _N Coppia alla velocità nominale	180	169	168	158	151	Nm
T _{max} Coppia massima	500	450	450	460	430	Nm
n _p Velocità massima a Potenza costante	2800	4200	5400	5400	5400	rpm

5. Dati elettrici versione IP23 S

5.1 Caratteristiche motori VT 132 (S-M-L-P) IP23 S

Grado di protezione	IP 2	23 S	Ventilazione	IC 06 (CEI E	N 60034-6)	
Inerzia rotorica J (kgm²)			S 0,052 - M 0,073 - L 0,099 - P 0,122			
	VT 132 S	6400 (5000) **		VT 132 S	96	
Velocità massima meccanica	VT 132 M	6400 (5000) **	Doco motoro (kg)	VT 132 M	120	
nmax (rpm) *	VT 132 L	6400 (5000) **	Peso motore (kg)	VT 132 L	151	
	VT 132 P	5000 (5000) **		VT 132 P	179	
Cuscinetto lato D-End **	6310	ZZ C3	Cuscinetto lato ND-End	6209	ZZ C3	
Classe di vibrazione	,	4	Forma costruttiva	IM 200	1 (B35)	
Classe di isolamento	I	1	Sovratemperatura Classe	F		
Tensione di alimentazione nominale (V)	40	00	Protezione termica	NC 1	40°C	

^{*}su richiesta (opzione alta velocità da valutare con nostro ufficio tecnico)

CARATTERISTICHE VENTILATORE

Frequenza (Hz)	50 / 60	Corrente (A)	1,14					
Numero di fasi	3	Montaggio	Radiale					
Tensione (V)	400Υ / 230Δ - 480Υ / 277Δ	Tipo di ventilazione	Aspirazione forzata					
Potenza (W)	370 / 440	Grado di protezione (IP)	IP44					
Distanza minima per entrata / uscita	Pistanza minima per entrata / uscita aria (mm)							

VT 132 S

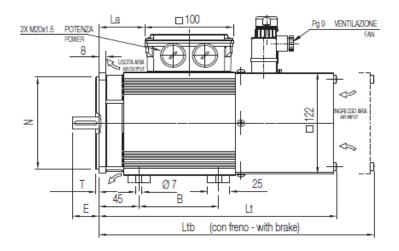
n _N Velocità nominale	1055	1575	2100	2651	3162	rpm
P _N Potenza nominale	11	15,5	22	27	31	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	24,9	33,6	49,5	60,3	66,3	Α
T _N Coppia alla velocità nominale	100	94	100	97	94	Nm
T _{max} Coppia massima	220	220	270	280	260	Nm
n _p Velocità massima a Potenza costante	2300	3800	5800	6400	6400	rpm

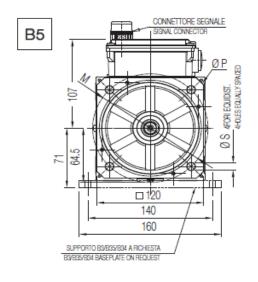
VT 132 M

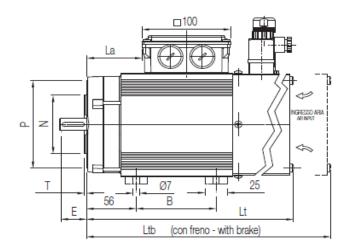
n _N Velocità nominale	1048	1578	2094	2647	3146	rpm
P _N Potenza nominale	17	24	30	37	44	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	37,7	52,1	62,9	77,0	92,1	Α
T _N Coppia alla velocità nominale	155	145	137	133	134	Nm
T _{max} Coppia massima	340	370	350	350	380	Nm
n _p Velocità massima a Potenza costante	2300	4100	5400	6400	6400	rpm

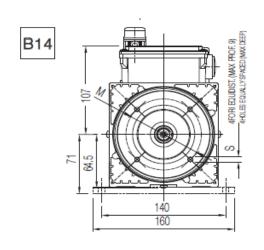
^{**}su richiesta disponibili i cuscinetti a rulli per applicazioni con tiro cinghia (con cuscinetti a rulli la velocità massima meccanica diminuisce)

VT 132 L

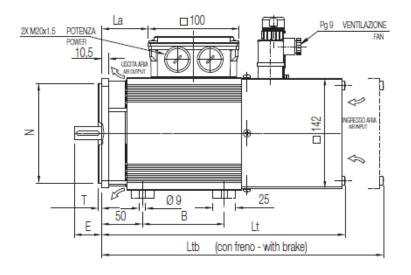

n _N Velocità nominale	1058	1581	2101	2646	3147	rpm
P _N Potenza nominale	22	31	38	44	50	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	49,0	66,2	79,2	90,9	101	Α
T _N Coppia alla velocità nominale	199	187	173	159	152	Nm
T _{max} Coppia massima	510	520	500	470	420	Nm
n _p Velocità massima a Potenza costante	2700	4400	6000	6400	6400	rpm

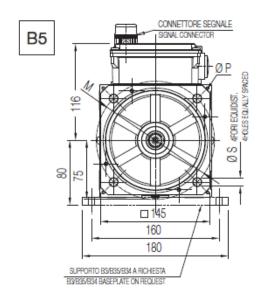

VT 132 P

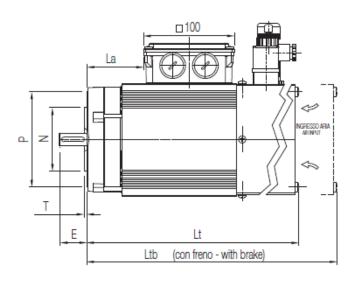

n _N Velocità nominale	1057	1585	2103	2658	3160	rpm
P _N Potenza nominale	27	42	44	50	55	kW
V _N Tensione nominale	380	380	380	380	380	V
I _N Corrente alla Potenza nominale	60,2	83,8	91,2	107	118	Α
T _N Coppia alla velocità nominale	244	254	200	180	166	Nm
T _{max} Coppia massima	680	700	590	640	620	Nm
n _p Velocità massima a Potenza costante	2900	4800	5400	5400	5400	rpm

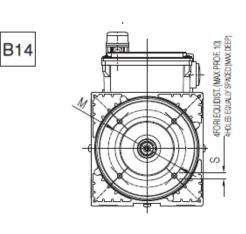

6. Dimensioni di ingombro

6.1 Dimensioni di ingombro - VT071

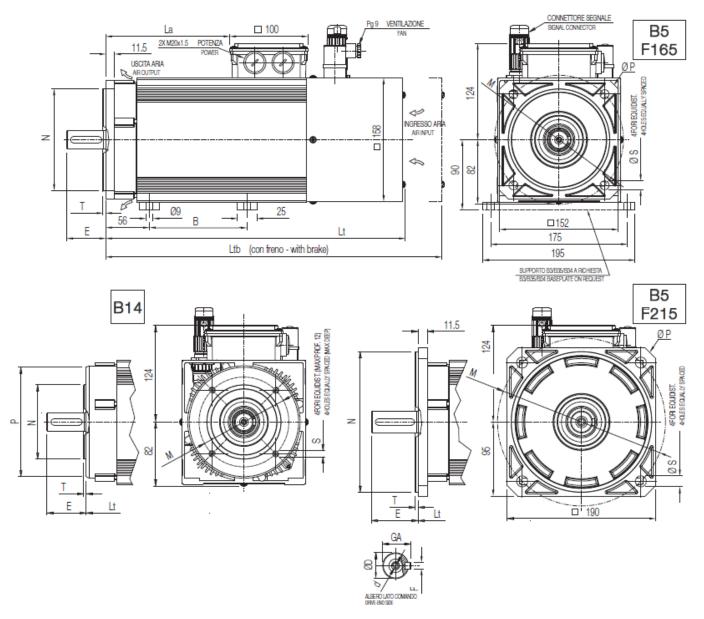





	т:		L	ungh	ezza	1					Alb	ero						Fl	ang	ia	
	Tip	00	В	La	Lt	Ltb	D (1)	D (2)	E (1)	E (2)	GA (1)	GA (2)	F (1)	F (2)	d (1)	d (2)	Р	N	Т	M	S
71	M L	В5	90	51,5	270	312	14j6	19j6	30	40	16	21,5	5	6	M5	M6	160	110j6	3,5	130	9
>	M	B14	90	62,5	281	323	14j6	19j6	30	40	16	21,5	5	6	M5	M6	105	70j6	2,5	85	M6

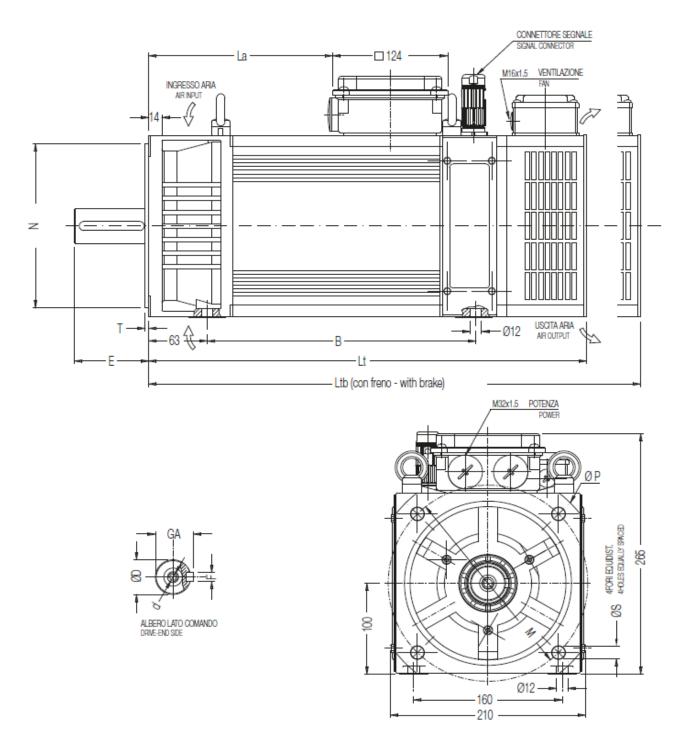

(1) Standard (2) Su richiesta

6.2 Dimensioni di ingombro - VT080



	Tin		L	.ungh	ezza						Alb	ero						Fl	ang	ia	
	Tip	0	В	La	Lt	I+h	D (1)	D (3)	c /1\	E /2\	GA	GA	F (1)	E (2)	۵ (1)	4 (2)	Р	N	т	М	S
			ь	La	Ll	LUD	D (1)	D (2)	L (1)	L (2)	(1)	(2)	r (±)	F (2)	u (1)	u (2)	Г	IN	'	IVI	3
_	S	B5	100	78	285	325	19j6	24j6	40	50	21,5	27	6	8	M6	M8	200	130j6	3 5	165	11
80	L	55	100	,,,	203	323	13,0	27,0	0		21,3			J	1410	1410	200	130,0	3,3	103	
5	S	B14	_	78	285	325	19j6	24j6	40	50	21,5	27	6	8	M6	M8	120	80j6	2,5	100	M6
	L	D14	,	76	263	323	1910	24]0	40	30	21,3	21	0	0	IVIO	IVIO	120	ouju	2,3	100	IVIO

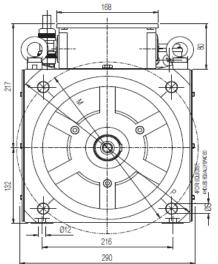
(1) Standard (2) Su richiesta


6.3 Dimensioni di ingombro - VT090

	_	ina		Lungl	nezza				Albero				F	langi	a	
	ľ	ipo	В	La	Lt	Ltb	D (1)	E (1)	GA (1)	F (1)	d (1)	Р	N	Т	М	S
	S		100	84	294	344										
90	L	B5/F165	125	119	345	395	24	50	27	8	M8	200	130j6	3,5	165	11,5
7	Р	(Standard)	125	159	385	435	24	30	21	0	IVIO	200	130]0	3,3	103	11,3
	Χ		185	229	455	505										
	S	DE /E24E	100	84	294	344										
90	L	B5/F215 (Su	125	119	345	395	28	60	31	8	M10	250	180j6	4	215	13,5
7	Р	richiesta)	125	159	385	435	20	00	21	0	IVIIU	230	100]0	4	213	13,3
	Χ	Tichiestaj	185	229	455	505										
	S		-	84	294	344										
90	L	B14	-	119	345	395	24	50	27	8	M8	140	95j6	3	115	M8
7	Р	D14	-	159	385	435	24	30	21	٥	IVIO	140	ا ال	3	113	IVIO
	Χ		-	229	455	505										

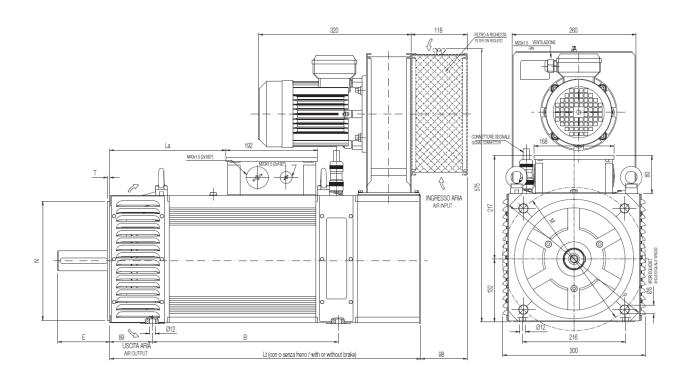
(1) Standard (2) Su richiesta

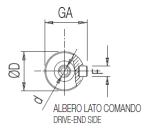
6.4 Dimensioni di ingombro - VT100


т:	20	ı	_ungl	hezza	3					Alb	ero						F	langi	a	
111	ро	В	La	Lt	Ltb	D (1)	D (2)	E (1)	E (2)	GA (1)	GA (2)	F (1)	F (2)	d (1)	d (2)	Р	N	Т	М	S
	Α	240	148	422	506															
100	S	290	198	472	556															
10	М	320	228	502	586	38 k6	28 j6	80	60	41	31	10	8	M12	M10	250	180j6	4	215	14
5	L	365	273	547	631															
	Р	420	328	602	685															

(1) Consigliato (2) Su richiesta

6.5 Dimensioni di ingombro - VT132 IP54


т:.	2.0		Lungl	hezza	
Ti	00	В	La	Lt	Ltb
	S	320	173	585	705
VT 132	М	390	243	655	775
5	L	480	333	745	865
	Р	560	413	825	945


т:.	20			Albero					Flangia		
'''	ро	D	E	GA	F	d	Р	N	Т	М	S
2	(1)	42 k6	110	45	12	M16	350	250 j6	5	300	18
T 132	(2)	48 k6	110	51,5	14	M16	350	250 j6	5	300	18
ΙΛ	(2)	38 k6	80	41	10	M12	300	230 j6	4	265	14

(1) Consigliato

(2) Su richiesta

6.6 Dimensioni di ingombro - VT132 IP23

Tipo		Lunghezza			
		В	La	Lt	
	S	320	173	585	
132	М	390	243	655	
VT 132	L	480	333	745	
	Р	560	413	825	

т:.	20	Albero			Flangia						
'''	ро	D	E	GA	F	d	Р	N	Т	М	S
2	(1)	42 k6	110	45	12	M16	350	250 j6	5	300	18
T 132	(2)	48 k6	110	51,5	14	M16	350	250 j6	5	300	18
	(2)	38 k6	80	41	10	M12	300	230 j6	4	265	14

⁽¹⁾ Consigliato (2) Su richiesta

7. Collegamento elettrico

7.1 Istruzioni sulla sicurezza

ATTENZIONE!

Non eseguire interventi sul motore, sui cavi di collegamento, sui convertitori di frequenza o sugli accessori quali freni, ventilatori o cavi di protezioni termiche quando è presente tensione.

ATTENZIONE!

Per gli ingressi dei cavi, utilizzare pressacavi e tenute conformi al tipo di protezione e al diametro del cavo.

ATTENZIONE!

Per la corretta installazione è responsabile il costruttore dell'impianto. I connettori di segnale e di potenza devono essere schermati.

Il motore deve essere connesso come indicato negli schemi forniti.

Osservare le istruzioni relative alla compatibilità elettromagnetica e le istruzioni del costruttore del convertitore.

Quando si effettua il collegamento assicurarsi che:

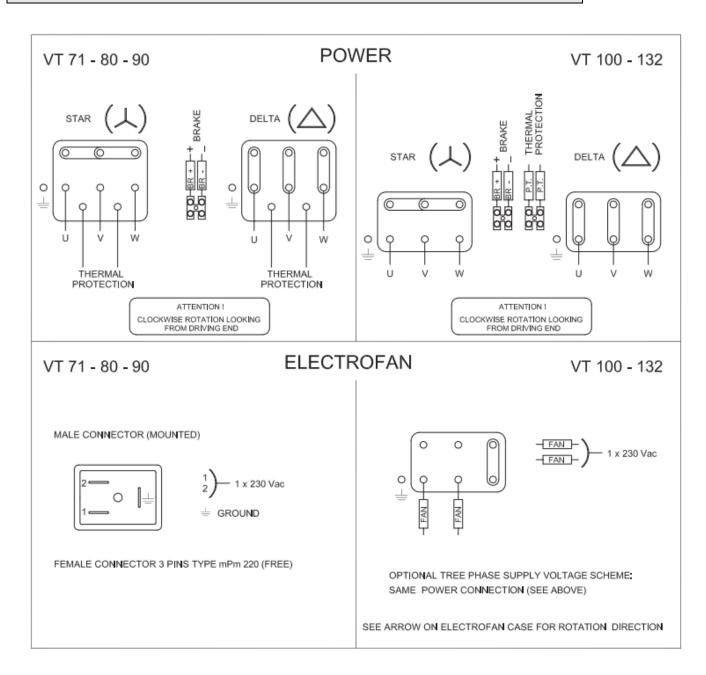
- o I conduttori di collegamento siano adatti all'impiego previsto, alle tensioni e correnti presenti.
- Siano previsti conduttori di collegamento adeguatamente dimensionati, morsetti antitorsione, antitiro e antispinta come pure protezioni antipiega per i conduttori stessi.
- o II conduttore protettivo sia collegato a terra.
- La messa a terra sia eseguita in accordo alle normative locali prima di collegare il motore all'alimentazione.

Con collegamento per mezzo di connettori assicurarsi che:

 Le ghiere dei connettori di segnale e potenza siano ben serrate al fine di garantire un buon contatto ed ermeticità e scatti la protezione di bloccaggio del connettore qualora prevista.

Con collegamento per mezzo di morsettiera bisogna osservare quanto segue:

- o Le estremità dei conduttori devono essere spelate solo fino al capocorda o al morsetto.
- Le dimensioni dei capicorda devono essere adatte ai morsetti utilizzati sulla morsettiera.
- o Rispettare i valori di coppia di serraggio dei terminali.
- o Il conduttore protettivo o il conduttore di messa a terra devono essere collegati.
- Per grandi sezioni, il conduttore di terra può essere diviso in tre conduttori di protezione, posizionati simmetricamente attorno ai conduttori di alimentazione.
- o L'interno della morsettiera deve essere pulito e privo di residui conduttori.
- Evitare la caduta accidentale di dadi, rondelle, residui di conduttori all'interno del motore attraverso il foro passaggio cavi
- Fare attenzione ai fili sporgenti dai conduttori e rispettare i traferri minimi tra le parti in tensione.
- Gli imbocchi non utilizzati devono essere chiusi e gli elementi di chiusura devono essere avvitati a fondo per garantire una tenuta stagna alla polvere e all'acqua.
- Le tenute delle scatole morsettiere devono essere inserite correttamente nelle rispettive sedi al fine di assicurare la classe IP corretta.


La coppia di serraggio necessaria in base al tipo di perno è indicata di seguito:

Dimensione perno	Coppia di serraggio [Nm]	
M4	1.6	
M5	2.5	
M6	4	
M8	8	
M10	13	
M12	20	
M14	30	
M16	40	

ATTENZIONE!

Serrare i cavi sulle basette rispettando le coppie di serraggio corrispondenti al tipo di perno. Tolleranza +0% / -10%

7.2 Trasduttore (Encoder)

Normalmente, sui motori serie VT, viene usato un trasduttore ad albero cavo.

Il corpo del trasduttore è fissato al coperchio posteriore del motore ed è reso libero di oscillare per mezzo di un braccio di reazione che ha il compito di assorbire eventuali disallineamenti assiali/radiali. Per la connessione elettrica è utilizzato un connettore maschio (da pannello o passa paratia) M23 a 12 pin. La parte femmina (volante) con contatti a saldare è fornita di serie insieme al trasduttore.

Assicurarsi sempre che i dati elettrici del trasduttore siano compatibili con quelli dell'inverter che alimenta il motore, che la tensione di alimentazione sia corretta e che i collegamenti siano rispettati.

ATTENZIONE!

Non alimentare i canali di uscita del trasduttore e non fare mai funzionare il motore se il trasduttore ha i cavi di uscita in cortocircuito tra loro o verso massa.

ATTENZIONE!

Non effettuare la prova di alta tensione sui terminali del trasduttore.

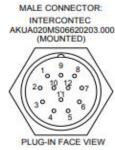
Le istruzioni di cablaggio del connettore volante di segnale sono illustrate su un foglio posizionato all'interno della scatola morsettiera del motore.

Usare sempre un cavo schermato per il collegamento con l'inverter.

Durante la saldatura del connettore volante non surriscaldare eccessivamente i contatti. Evitare cortocircuiti tra i contatti del connettore.

ATTENZIONE!

Il mancato rispetto di una delle sopra citate avvertenze può causare l'immediata rottura dell'encoder.



Lo schema di connessine dell'encoder è allegato al connettore volante oppure è inserito all'interno della scatola morsettiera del motore.

Normalmente la massima velocità di rotazione meccanica dell'encoder è di 9000rpm. Non superare questo limite per evitare danni al trasduttore.

Collegamento encoder SICK VFS60:

FEMALE CONNECTOR: SIZE M23 12 PINS (FREE) INTERCONTEC A ST A 013 FS 13 10 0035 000

PIN	SIGNAL TTL/HTL	EXPLANATION	
1	B_	Signal line	
2	N.C.	Not connected	
3	Z	Signal line	
4	Z	Signal line	
5	A	Signal line	
6	A_	Signal line	
7	N.C.	Not connected	
8	В	Signal line	
9	N.C.	Not connected	
10	GND	Encoder ground connection	
11	N.C.	Not connected	
12	Us	Supply voltage (volt-free to housing)	
Screen	Screen	Connected to housing on encoder side Connected to ground on control side	

7.3 Protettore termico

Di serie è fornita la protezione termica del motore mediante termoprotettore bimetallico 140°C (tensione massima 250Vac, corrente massima 5Aac) incorporato negli avvolgimenti. Il contatto normalmente chiuso si apre quando il termoprotettore raggiunge la temperatura di intervento. Il morsetto di collegamento è normalmente posto all'interno della scatola morsettiera.

Non effettuare la prova di alta tensione sui terminali dei protettori termici.

ATTENZIONE!

Il mancato collegamento delle sonde termiche fa decadere immediatamente la garanzia sul prodotto.

8. Trasporto e stoccaggio

8.1 Condizioni di trasporto

Se presenti, utilizzare per il trasporto solo i ganci di sollevamento appositamente previsti.

ATTENZIONE!

Verificare prima del sollevamento che i ganci siano ben avvitati e che il carico sia bilanciato. I ganci sono dimensionati per il peso del motore, non aggiungere altri pesi. Non usare i ganci se la temperatura è inferiore a -20°C.

ATTENZIONE!

Non sollevare il motore afferrando l'albero: il copri-albero in plastica potrebbe sfilarsi, provocando la caduta del motore, con conseguente rischio di ferite o danni.

Tutti i motori prodotti da Brusatori lasciano la fabbrica in condizioni ottimali, dopo essere stati controllati e testati. All'arrivo, controllare il motore con cura per assicurarsi che non abbia subito danni durante il trasporto. Nel caso si notino anomalie o danni, contattare il fabbricante il prima possibile, e non mettere in servizio il motore.

8.2 Condizioni di stoccaggio

Per un corretto stoccaggio, la temperatura ambiente dev'essere tra -20°C e +70°C.

Se le macchine vengono immagazzinate, posizionarle orizzontalmente e prestare attenzione che l'ambiente sia asciutto, senza polvere e senza vibrazioni.

Ruotare manualmente l'albero motore ogni 2-3 mesi.

Misurare la resistenza di isolamento prima di avviare il motore per la prima volta, assicurarsi che sia almeno 2 $M\Omega$. In caso contrario, essiccare l'avvolgimento.

Per l'essiccazione dell'avvolgimento, la temperatura del forno deve essere 90°C per 12-16 ore, e successivamente 105°C per 6-8 ore.

9. Installazione

9.1 Montaggio

ATTENZIONE!

I motori sono progettati esclusivamente per l'installazione in ambienti industriali. Installazioni diverse sono consentite solo se vengono adottati dal costruttore della macchina/impianto tutti gli accorgimenti necessari per garantirne l'utilizzo in condizioni di sicurezza.

Leggere attentamente tutto il manuale prima di eseguire qualsiasi operazione.

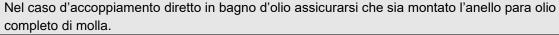
Ogni operazione di montaggio deve essere eseguita da personale qualificato, con strumenti adeguati al tipo di operazione.

Provvedere ad un buon fissaggio di piedi e flange.

Per il montaggio dei motori con flangia IM B5 (IM 3001), l'incastellatura di sostegno del motore deve essere dimensionata in modo da evitare il trasferimento di vibrazioni al motore e l'insorgenza di vibrazioni dovute a risonanze. Per il montaggio dei motori IM B3 (IM 1001) e IM B35 (IM 2001), il basamento deve essere dimensionato in modo da evitare il trasferimento di vibrazioni al motore e l'insorgenza di vibrazioni dovute a risonanze.

ATTENZIONE!

Il motore va montato in modo tale da garantire un'adeguata dissipazione del calore senza ostacolare la ventilazione.



Il lato opposto della flangia NON deve essere isolato termicamente, in quanto necessaria alla dissipazione del calore.

Per i motori lunghi e di grandi dimensioni (taglia VT 100L, 100P, 132L, 132P) è raccomandato un montaggio IM B35 (IM 2001) per evitare flessioni e/o deformazioni della flangia/albero motore. Per il montaggio dei motori con piedi IM B3 e IMB35, il basamento deve essere piano, rigido e solido. Per il montaggio di alcuni motori è necessario rimuovere le portine di protezione che devono successivamente essere posizionate come in origine. Durante le fasi di montaggi prestare attenzione a non danneggiare gli avvolgimenti. Se non dovesse essere possibile il montaggio IM B35 per i motori lunghi sarebbe fortemente consigliato l'utilizzo di un supporto posizionato in corrispondenza dello scudo posteriore, il quale non deve essere rigido ma provvisto di molle a tazza o supporti in gomma comprimibile. La spinta che il supporto deve esercitare è quantificabile al 50% del peso totale del motore.

ATTENZIONE!

Nel caso di installazioni in posizione verticale con l'albero rivolto verso l'alto accertarsi che nessun tipo di liquido possa infiltrarsi nel cuscinetto superiore.

ATTENZIONE!

Nel caso di accoppiamento diretto (albero innestato), con ingranaggi e con riduttore è assolutamente indispensabile effettuare un esatto allineamento fra albero motore e albero condotto e tra le flange di accoppiamento. In caso contrario possono manifestarsi forti vibrazioni, irregolarità nel moto, spinte assiali indesiderate e rottura dell'albero motore.

Nel caso di accoppiamento con cinghie, installare il motore con l'albero perfettamente parallelo e allineato a quello della puleggia per evitare spinte assiali sui supporti. Il tiro delle cinghie non deve superare in nessun caso il carico massimo applicabile.

Il carico assiale non deve superare il 20% del massimo carico radiale indicato alla velocità nominale del motore.

ATTENZIONE!

Una tensione eccessiva delle cinghie può provocare un rapido logorio dei cuscinetti e la rottura dell'albero.

Applicare o togliere gli elementi di comando (puleggia, giunto, ruota dentata, ecc.) solo con appositi dispositivi (per esempio, riscaldando l'organo di trasmissione o utilizzando il foro filettato sull'estremità d'albero).

ATTENZIONE!

Non montare mai semigiunti o pulegge utilizzando un martello, né rimuoverli utilizzando una leva infulcrata contro il corpo del motore.

Prima di calettare l'organo di trasmissione togliere la vernice antiruggine dall'albero motore e dalla chiavetta utilizzando alcool od appositi solventi.

È importante che il solvente non penetri all'interno dei cuscinetti.

Ingrassare l'estremità dell'albero e la chiavetta prima di calettare l'organo di trasmissione. Osservare le misure di sicurezza generali per la protezione degli organi di trasmissione contro i contatti.

ATTENZIONE!

Evitare assolutamente di dare colpi o esercitare pressioni sull'estremità d'albero.

ATTENZIONE!

L'utilizzo di componenti danneggiati o inadatti può provocare danni a persone o cose.

La flangia del motore va fissata direttamente alla macchina tramite apposite viti. Rispettare le coppie di serraggio corrette, usando la strumentazione corretta.

9.2 Ventilazione

I motori sono provvisti di elettroventilatore monofase alimentato a 230Vac 50/60Hz.

Il flusso dell'aria può essere in mandata o in aspirazione in base al tipo di motore e di ventilazione scelta. La distanza minima tra la struttura della macchina e lo scarico dell'aria calda del motore deve essere almeno di 100mm.

Per installazioni in condizioni ambientali difficili dovute alla presenza di molta polvere, acqua, forte umidità, nebulizzazioni, vapori d'acqua-olio, ecc. è necessario utilizzare motori con grado di protezione IP54. In queste condizioni di impiego è richiesta la manutenzione periodica del ventilatore e del motore per rimuovere i depositi di sporco dalle palette della girante/ventola e dai canali di ventilazione.

Per i motori con protezione IP23 è indispensabile accertarsi della qualità dell'aria di raffreddamento. Fare in modo che l'aria aspirata dal ventilatore sia sempre fresca, pulita ed asciutta. Per questo tipo di motori è disponibile un filtro dell'aria che può essere installato sul ventilatore.

Le portine di chiusura devono essere sempre installate prima di procedere all'avviamento del motore. L'aria aspirata/soffiata dal ventilatore deve sempre attraversare completamente lo statore in senso longitudinale e fuoriuscire dalla parte opposta.

9.3 Messa in servizio

Prima della messa in servizio è necessario verificare i seguenti punti:

- o II rotore deve poter ruotare liberamente (se necessario alimentare il freno).
- Deve essere verificata la corretta installazione degli elementi di azionamento.
- Tutti i collegamenti elettrici e gli elementi di collegamento devono essere eseguiti e serrati con cura.
- Il conduttore protettivo e di messa a terra deve essere collegato correttamente.
- Eventuali dispositivi ausiliari devono essere funzionanti (freno, ventilatore, ecc.).
- o E' opportuno prendere adeguate misure di sicurezza contro i contatti con parti in movimento e sotto tensione.

ATTENZIONE!

Assicurarsi che il freno (se previsto) funzioni correttamente.

Il freno è adatto solo per un numero limitato di frenate d'emergenza.

L'impiego come freno di lavoro non è consentito.

ATTENZIONE!

Utilizzare sempre i dispositivi di sicurezza, anche durante le operazioni di test.

ATTENZIONE!

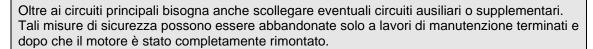
Gli azionamenti possono provocare elevate sollecitazioni di tensione sull'avvolgimento del motore e pertanto è necessario verificare con opportuno oscilloscopio e personale specializzato che i valori di tensione sui terminali della scatola morsettiera non siano troppo elevati a causa di lunghi cablaggi e/o dalla tensione e frequenza di alimentazione dell'inverter.

Si precisa che la causa di tale fenomeno è esterna al motore.

In questi casi si raccomanda di inserire dei filtri adeguati tra inverter e motore per ridurre le sovratensioni $\frac{dV}{dt}$, e l'utilizzo di cavi simmetrici schermati.

ATTENZIONE!

Il presente elenco di verifiche può essere incompleto, possono quindi essere necessarie ulteriori verifiche.


10. Manutenzione

10.1 Istruzioni sulla manutenzione

ATTENZIONE!

Prima di iniziare qualunque lavoro sui motori e prima di aprire qualsiasi copertura di parti attive, assicurarsi di:

- o Togliere la tensione al motore.
- Bloccare la re-inserzione.
- Verificare l'assenza di tensione.
- Verificare la corretta messa a terra.
- o Coprire o separare parti adiacenti sotto tensione.

Tutti i lavori vanno eseguiti con motore disinserito.

Tutti i motori standard montano cuscinetti a sfere pre-lubrificati a vita, che non richiedono manutenzione. Ogni 2000 ore di funzionamento è bene verificarne la temperatura e le vibrazioni. Si consiglia comunque di sostituire i cuscinetti dopo circa 20000 ore operative, al più dopo tre anni.

I cuscinetti e i loro grassi devono essere adatti per un campo di temperatura da -30° a +140°C.

Per i motori provvisti di ingrassatore, è necessario rispettare gli intervalli di ri-lubrificazione suggeriti dal costruttore:

INTERVALLO RI-LUBRIFICAZIONE VT100 CON CUSCINETTI A RULLI				
Tipo di cuscinetto	RPM	Ore di funzionamento (h)	Quantità di grasso (g)	
	1000	13800		
NU 209 ECP	2000	7900	8	
	3000	4500		

INTERVALLO RI-LUBRIFICAZIONE VT132 CON CUSCINETTI A RULLI				
Tipo di cuscinetto	RPM	Ore di funzionamento (h)	Quantità di grasso (g)	
	1000	10000		
NU 310 ECP	2000	6100	15	
	3000	3000		

La temperatura ambiente, la velocità di funzionamento ed il tipo di lubrificante utilizzato possono influenzare notevolmente la frequenza di intervento. Per maggiori informazioni consultare il nostro ufficio tecnico. Per le parti di ricambio specificare dettagliatamente tutti i dati di targa del motore o dell'accessorio cui si riferiscono, con eventuali opzioni richieste in sede d'ordine.

ATTENZIONE!

Questo manuale, insieme ad eventuali ulteriori informazioni sulla sicurezza, deve essere conservato!

Se non espressamente autorizzata dal costruttore, qualsiasi riparazione eseguita dall'utilizzatore finale fa decadere ogni responsabilità del costruttore sulla conformità del motore fornito.

Si consiglia di far eseguire i lavori di manutenzione nel nostro centro d'assistenza.

Le superfici lavorate non protette (flange ed estremità dell'albero) devono essere trattate con prodotti anticorrosivi. La pulizia del motore può danneggiarlo se effettuata in modo errato.

Utilizzare solo prodotti appropriati.

Evitare il contatto dei prodotti con paraolio e guarnizioni per evitarne il danneggiamento.

10.1 Risoluzione dei guasti

Nota:

Il presente elenco non può considerarsi completo, per altri dubbi consultare il nostro ufficio tecnico.

PROBLEMA	PROBABILE CAUSA	POSSIBILE SOLUZIONE	
	Mancanza di alimentazione	Controllare alimentazione o collegamenti dell'azionamento	
Il motore non si avvia	Mancato rilascio del freno	Controllare collegamenti del freno o eventuali guasti	
	Problemi a encoder/resolver	Controllare collegamenti o presenza di guasti di encoder/resolver	
Il motore funziona lentamente,	Anomalie nel funzionamento dell'inverter, collegamenti errati	Verificare che i valori nominali coincidano con quelli rilevati, controllare funzionamento inverter	
o non gira come dovrebbe	Problemi a encoder/resolver	Controllare collegamenti o presenza di guasti di encoder/resolver	
	Funzionamento a valori non corretti, problema alla ventilazione	Controllare che le ventole funzionino correttamente	
Il motore si surriscalda	Mancata attivazione delle sonde termiche	Controllare che le protezioni termiche funzionino correttamente	
II Motore Si Sumscalda	Sovraccarico, alimentazione non corretta, inverter guasto	Verificare che i valori nominali coincidano con quelli rilevati	
	Mancato rilascio del freno	Verificare corretto funzionamento del freno	
Mancato funzionamento freno	Freno guasto, collegamento errato del freno	Controllare collegamenti o presenza di guasti del freno	
Vibrazioni	Allineamento impreciso, cuscinetti usurati, viti di fissaggio allentate, equilibratura di accessori montati sull'albero comando del motore non eseguita	Eseguire nuovamente l' equilibratura degli accessori montati sull'albero comando del motore, stringere eventuali viti allentate, sostituire cuscinetti usurati	
Rumorosità eccessiva	Presenza di corpi estranei, parametri non corretti	Verificare presenza di corpi estranei, controllare settaggi inverter	
Altri problemi non elencati	Mancato rispetto delle istruzioni o guasto accidentale	Contattare immediatamente il nostro ufficio tecnico	

11. Smaltimento

Fare riferimento alla natura del materiale ed alle norme vigenti riguardo lo smantellamento e lo smaltimento del materiale elettrico, in modo da limitare l'impatto sull'ambiente ed evitare danni ecologici.

12. Certificazioni

12.1 Direttiva RoHS

I motori oggetto del presente manuale sono conformi alla Direttiva 2011/65/UE (Direttiva RoHS) e successive Direttive Delegate, riguardanti la limitazione delle sostanze pericolose.

12.2 Direttiva EMC

I motori elettrici non sono oggetto della Direttiva 2014/30/UE (Direttiva EMC) riguardante la compatibilità elettromagnetica.

I motori nel presente manuale sono conformi alla Direttiva EMC solo se equipaggiati con componenti elettronici, essendo stata verificata la conformità EMC dei componenti installati.

12.3 Dichiarazione UE di Conformità

È possibile trovare la versione più recente della Dichiarazione di Conformità sul sito Brusatori.

12.4 Sistema di gestione per la qualità ISO 9001:2015

È possibile trovare la versione più recente del documento sul sito Brusatori.

12.5 Certificato di conformità UL/CSA (opzionale)

È possibile trovare la versione più recente dei certificati di conformità UL e CSA sul sito Brusatori.

13. Contatti

Ragione sociale	Brusatori Srl
Indirizzo	Via Antonio Meucci 5/7, 20012 Cuggiono (MI) – Italy
Telefono	+39 0225068401
Fax	+39 0225060140
Sito web	www.brusatori.eu
E-mail	info@brusatori.eu

Note

Applicazioni

TESSILE

Stiratoi, asciugatoi, vaporizzaggi, calandre

MACCHINE UTENSILI

Rettifiche, fresatrici, centri di lavoro, segatrici

STAMPA

Macchine per la stampa rotocalco, macchine per la stampa flexografica, linee per converting, accoppiatrici, linee spalmatrici

METALLI

Avvolgitori-svolgitori, caricatori ed impilatori, linee tubi, linee di trafilatura, linee di produzione cavo, linee di taglio longitudinale e trasversale

PLASTICA

Linee di estrusione, macchine tubi, macchine profili, linee stretch, linee nastro, linee per il riciclaggio

CARTA

Avvolgitori-svolgitori, taglierine, ribobinatrici, confezionatrici

Member of Keb Group

Sede operativa | Via Meucci 5/7 | 20012 | Cuggiono (MI) | ITALY

Tel. | +39 02 25068401

E-mail | info@brusatori.eu